0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

教大家如何成功设计电源模块

h1654155149.6853 来源:张飞实战电子 作者:张飞实战电子 2021-07-21 09:26 次阅读

电源模块是可以直接贴装在印刷电路板上的电源供应器,其特点是可为专用集成电路ASIC)、数字信号处理器DSP)、微处理器、存储器、现场可编程门阵列 (FPGA) 及其他数字或模拟负载提供供电。一般来说,这类模块称为负载点 (POL) 电源供应系统或使用点电源供应系统 (PUPS)。

由于模块式结构的优点甚多,因此高性能电信、网络联系及数据通信等系统都广泛采用各种模块。虽然采用模块有很多优点,但工程师设计电源模块以至大部分板上直流/直流转换器时,往往忽略可靠性及测量方面的问题。本文将深入探讨这些问题,并分别提出相关的解决方案。

采用电源模块的优点

目前不同的供应商在市场上推出多种不同的电源模块,而不同产品的输入电压、输出功率、功能及拓扑结构等都各不相同。采用电源模块可以节省开发时间,使产品可以更快推出市场,因此电源模块比集成式的解决方案优胜。电源模块还有以下多个优点:

● 每一模块可以分别加以严格测试,以确保其高度可靠,其中包括通电 测试,以便剔除不合规格的产品。相较之下,集成式的解决方案便较难测试,因为整个供电系统与电路上的其他功能系统紧密联系一起。

● 不同的供应商可以按照现有的技术标准设计同一大小的模块,为设计电源供应器的工程师提供多种不同的选择。

● 每一模块的设计及测试都按照标准性能的规定进行,有助减少采用新技术所承受的风险。

● 若采用集成式的解决方案,一旦电源供应系统出现问题,便需要将整块主机板更换;若采用模块式的设计,只要将问题模块更换便可,这样有助节省成本及开发时间。

容易被忽略的电源模块设计问题

虽然采用模块式的设计有以上的多个优点,但模块式设计以至板上直流/直流转换器设计也有本身的问题,很多人对这些问题认识不足,或不给予足够的重视。以下是其中的部分问题:

● 输出噪音的测量;

● 磁力系统的设计;

● 同步降压转换器的击穿现象;

● 印刷电路板的可靠性。

这些问题会将在下文中一一加以讨论,同时还会介绍多种可解决这些问题的简单技术。

输出噪音的测量技术

所有采用开关模式的电源供应器都会输出噪音。开关频率越高,便越需要采用正确的测量技术,以确保所量度的数据准确可靠。量度输出噪音及其他重要数据时,可以采用 Tektronix 探针探头 (一般称为冷喷嘴探头),以确保测量数字准确可靠,而且符合预测。这种测量技术也确保接地环路可减至最小。

进行测量时我们也要将测量仪表可能会出现传播延迟这个因素计算在内。大部分电流探头的传播延迟都大于电压探头。因此必须同时显示电压及电流波形的测量便无法确保测量数字的准确度,除非利用人手将不同的延迟加以均衡。

电流探头也会将电感输入电路之内。典型的电流探头会输入 600nH 的电感。对于高频的电路设计来说,由于电路可承受的电感不能超过1mH,因此,经由探头输入的电感会影响 di/dt 电流测量的准确性,甚至令测量数字出现很大的误差。若电感器已饱和,则可采用另一更为准确的方法测量电流量,例如,我们可以测量与电感器串行一起的小型分路电阻的电压。

磁学的设计

磁心是否可靠是另一个经常被人忽略的问题。大部分输出电感器都采用铁粉磁心,因为铁粉是成本最低的物料。铁粉磁心的成份之中大约有 95% 属纯铁粒,而这些铁粉粒利用有机胶合剂粘合一起。这些胶合剂也将每一铁粉粒分隔,使磁心内外满布透气空间。

铁粉是构成磁心的原材料,但铁粉含有小量的杂质如锰及铬,而这些杂质会影响磁心的可靠性,影响程度视乎所含杂质的数量。我们可以利用光谱电子显微镜 (SEM) 仔细查看磁心的截面,以便确定杂质的相对分布情况。磁心是否可靠,关键在于材料是否可以预测以及其供应是否稳定可靠。

若铁粉磁心长期处于高温环境之中,磁心损耗可能会增加,而且损耗一旦增多,便永远无法复原,因为有机胶合剂出现份子分解,令涡流损耗增加。这种现象可称为热老化,最后可能会引致磁心出现热失控。

磁心损耗的大小受交流电通量密度、操作频率、磁心大小及物料类别等多个不同因素影响。以高频操作为例来说,大部分损耗属涡流损耗。若以低频操作,磁滞损耗反而是最大的损耗。

涡流损耗会令磁心受热,以致效率也会受影响而下跌。产生涡流损耗的原因是以铁磁物质造成的物体受不同时间的不同磁通影响令物体内产生循环不息的电流。我们只要选用一片片的铁磁薄片而非实心铁磁作为磁心的物料,便可减低涡流损耗。例如,以磁带绕成的 Metglas 便是这样的一种磁心。其他的铁磁产品供应商如 Magnetics 也生产以磁带绕成的磁心。

Micrometals 等磁心产品供应商特别为设计磁性产品的工程师提供有关磁心受热老化的最新资料及计算方式。采用无机胶合剂的铁粉磁心不会有受热老化的情况出现。市场上已有这类磁心出售,Micrometals 的 200C 系列磁心便属于这类产品。

同步降压转换器的击穿现象

负载点电源供应系统 (POL) 或使用点电源供应系统 (PUPS) 等供电系统都广泛采用同步降压转换器。这种同步降压转换器采用高端及低端的 MOSFET 取代传统降压转换器的箝位二极管,以便降低负载电流的损耗。

工程师设计降压转换器时经常忽视“击穿”的问题。每当高端及低端 MOSFET 同时全面或局部启动时,便会出现“击穿”的现象,使输入电压可以将电流直接输送到接地。

击穿现象会导致电流在开关的一瞬间出现尖峰,令转换器无法发挥其最高的效率。我们不可采用电流探头测量击穿的情况,因为探头的电感会严重干扰电路的操作。我们可以检查两个场效应晶体管 (FET) 的门极/源极电压,看看是否有尖峰出现。这是另一个检测击穿现象的方法。(上层 MOSFET 的门极/源极电压可以利用差分方式加以监测。)

我们可以利用以下的方法减少击穿现象的出现。

采用设有“固定死区时间”的控制器芯片是其中一个可行的办法。这种控制器芯片可以确保上层 MOSFET 关闭之后会出现一段延迟时间,才让下层 MOSFET 重新启动。

这个方法较为简单,但真正实行时则要很小心。若死区时间太短,可能无法阻止击穿现象的出现。若死区时间太长,电导损耗便会增加,因为底层场效应晶体管内置的二极管在整段死区时间内一直在启动。

由于这个二极管会在死区时间内导电,因此采用这个方法的系统效率便取决于底层 MOSFET 的内置二极管的特性。

另一个减少击穿的方法是采用设有“自适应死区时间”的控制器芯片。这个方法的优点是可以不断监测上层 MOSFET 的门极/源极电压,以便确定何时才启动底层 MOSFET。

高端 MOSFET 启动时,会通过电感感应令低端 MOSFET 的门极出现 dv/dt 尖峰,以致推高门极电压。若门极/源极电压高至足以将之启动,击穿现象便会出现。

自适应死区时间控制器负责在外面监测 MOSFET 的门极电压。因此,任何新加的外置门极电阻会分去控制器内置下拉电阻的部分电压,以致门极电压实际上会比控制器监控的电压高。

预测性门极驱动是另一个可行的方案,办法是利用数字反馈电路检测内置二极管的导电情况以及调节死区时间延迟,以便将内置二极管的导电减至最少,确保系统可以发挥最高的效率。若采用这个方法,控制器芯片需要添加更多引脚,以致芯片及电源模块的成本会增加。

有一点需要注意,即使采用预测性门极驱动,也无法保证场效应晶体管不会因为 dv/dt 的电感感应而启动。

延迟高端 MOSFET 的启动也有助减少击穿情况出现。虽然这个方法可以减少或彻底消除击穿现象,但缺点是开关损耗较高,而效率也会下降。我们若选用较好的 MOSFET,也有助缩小出现在底层 MOSFET 门极的 dv/dt 电感电压振幅。Cgs 与 Cgd 之间的比率越高,在 MOSFET 门极上出现的电感电压便越低。

击穿的测试情况经常被人忽略,例如在负载瞬态过程中——尤其是每当负载已解除或突然减少时——控制器会不断产生窄频脉冲。目前大部分高电流系统都采用多相位设计,利用驱动器芯片驱动 MOSFET。但采用驱动器芯片会令击穿问题更为复杂,尤其是当负载处于瞬态过程之中。例如,窄频驱动脉冲的干扰,再加上驱动器出现传播延迟,都会导致击穿情况的出现。

大部分驱动器芯片生产商都特别规定控制器的脉冲宽度必须不可低于某一最低的要求,若低于这个最低要求,便不会有脉冲输入 MOSFET 的门极。

此外,生产商也为驱动器芯片另外加设可设定死区时间 (TRT) 的功能,以增强自适应转换定时的准确性。办法是在可设定死区时间引脚与接地之间加设一个可用以设定死区时间的电阻,以确定高低端转换过程中的死区时间。这个死区时间设定功能加上传播延迟可将处于转换过程中的互补性 MOSFET 关闭,以免同步降压转换器出现击穿情况。

可靠性

任何模块都必须在早期阶段通过严格的测试,以确保设计完善可靠,以免在生产过程中的最后阶段才出现意想不到的问题。有关模块必须可以在客户的系统之中进行测试,以确保所有有可能导致系统出现故障的相关因素,例如散热扇故障、散热扇间歇性停顿等问题都能给予充分的考虑。

采用分散式结构的工程师都希望所设计的系统可以连续使用很多年而很少或甚至不会出现故障。由于测试数字显示电源模块的 MTBF 高达几百万小时,要达到这个目标并不怎样困难。

但经常被人忽略的反而是印刷电路板的可靠性问题。照目前的趋势看,印刷电路板的面积越缩越小,但需要处理的电流量则越来越大,因此电流密度的增加可能会引致隐蔽式或其他通孔无法执行正常功能。

印刷电路板有部分隐蔽通孔必须传送大量电流,对于这些隐蔽通孔来说,其周围必须有足够的铜造防护装置为其提供保护,以确保设计更可靠耐用。这种防护装置也可抑制 z 轴的受热膨胀幅度。

若非如此,生产过程中以及产品使用时印刷电路板的环境温度一旦有什么变化,隐蔽通孔便会外露。工程师必须参考印刷电路板厂商的专业意见,彻底复检印刷电路板的设计,而印刷电路板厂商可以根据他们的生产能力提供有关印刷电路板设计可靠性的专业意见。

总结

我们若要利用电源模块组建可靠的电源供应系统,便必须解决设计可靠性的问题。上文集中讨论几个主要问题,其中包括铁粉磁心的可靠性、磁系统的特性、同步降压转换器的击穿现象以及高电流系统印刷电路板的可靠性等问题。

编辑:jq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电源模块
    +关注

    关注

    32

    文章

    1664

    浏览量

    92618

原文标题:干货|如何成功设计电源模块,这篇讲全了

文章出处:【微信号:电子工程世界,微信公众号:电子工程世界】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    电源模块的测试方法及要求

    电源模块测试是确保电源模块在各种条件下正常工作的重要手段。 1. 测试目的 电源模块测试的主要目的是确保电源模块在各种条件下能够正常工作,满足设计要求和使用需求。具体来说,测试目的包括
    的头像 发表于 08-01 09:27 609次阅读

    如何选择合适的电源模块?你了解电源模块可靠性测试吗?

    模块式结构的优点甚多,因此模块电源广泛用于交换设备、接入设备、移动通讯、微波通讯等领域。为增进大家电源模块的认识,本文将对电源模块的选择以
    的头像 发表于 07-04 18:19 777次阅读
    如何选择合适的<b class='flag-5'>电源模块</b>?你了解<b class='flag-5'>电源模块</b>可靠性测试吗?

    常用的电源模块有哪些

    常用的电源模块有哪些 电源模块是电子设备中不可或缺的组成部分,它们将输入的电压转换为设备所需的电压,以保证设备的正常运行。本文将详细介绍常用的电源模块类型、特点以及应用场景。 一、线性电源模块
    的头像 发表于 06-10 16:28 1499次阅读

    电源模块是什么东西

    电源模块是什么东西 电源模块是一种电子设备,用于将输入的电能转换为所需的电压和电流,以满足各种电子设备和系统的需求。电源模块的设计和制造涉及到多个领域,包括电力电子、控制理论、热设计、电磁兼容性等
    的头像 发表于 06-10 16:20 1407次阅读

    AC/DC电源模块的设计与实现技巧

    BOSHIDA AC/DC电源模块的设计与实现技巧 AC/DC电源模块是一种常用的电源模块,用于将交流电转换为直流电,为各种电子设备提供电力。在设计和实现AC/DC电源模块时,有一些重
    的头像 发表于 05-07 11:25 734次阅读
    AC/DC<b class='flag-5'>电源模块</b>的设计与实现技巧

    DC电源模块与其他电源模块的区别与优势

    BOSHIDA DC电源模块与其他电源模块的区别与优势 在现代电子设备中,电源模块是不可或缺的组成部分。电源模块的作用是将外部电源的电能转换
    的头像 发表于 03-27 13:07 681次阅读
    DC<b class='flag-5'>电源模块</b>与其他<b class='flag-5'>电源模块</b>的区别与优势

    DC电源模块的设计与调试技巧

    BOSHIDA  DC电源模块的设计与调试技巧 DC电源模块的设计与调试是电子工程师在实际项目中常常需要面对的任务。一个稳定可靠的DC电源模块对于电路的正常运行起到至关重要的作用。以下是一些
    的头像 发表于 03-25 13:56 422次阅读

    电源模块的技术要求

    电源模块的技术要求 BOSHIDA 安全认证 EMC要求 输出波纹和噪声 不同行业的电源模块在技术要求上可能会有所差异,但一般情况下,电源模块的技术要求如下: 输入电压范围:电源模块
    的头像 发表于 03-11 09:09 791次阅读

    电源模块的使用方法

    电源模块主要用于为电子设备和电路提供电源供电,以下是一般的电源模块使用方法: 确定电源模块的输入和输出电压要求:电源模块一般有输入和输出端子
    的头像 发表于 03-05 09:06 1447次阅读

    DC电源模块的选择技巧

    BOSHIDA  DC电源模块的选择技巧 选择DC电源模块时,以下是一些技巧: 1. 输出电压和电流要符合需求:首先确定所需的输出电压和电流,确保电源模块能够提供足够的电压和电流满足系统的需求
    的头像 发表于 03-01 11:01 526次阅读
    DC<b class='flag-5'>电源模块</b>的选择技巧

    电源模块外壳材质详细说明 保护散热绝缘 AC电源模块

    电源模块外壳材质详细说明 保护散热绝缘 AC电源模块 BOSHIDA 选择电源模块外壳材质时,需要考虑以下几个因素: 保护性能:外壳材质需要具有足够的强度和硬度,能够保护电源模块内部的
    的头像 发表于 02-20 09:03 634次阅读

    DC电源模块与AC电源模块的对比分析

    DC电源模块与AC电源模块的对比分析 BOSHIDA DC电源模块和AC电源模块是两种常见的电源模块,它们在供电方式、稳定性、适用范围等方面
    的头像 发表于 01-15 14:01 807次阅读
    DC<b class='flag-5'>电源模块</b>与AC<b class='flag-5'>电源模块</b>的对比分析

    DC电源模块和AC电源模块都有各自的优点和适用场景

    BOSHIDA DC电源模块和AC电源模块都有各自的优点和适用场景 DC电源模块和AC电源模块都有各自的优点和适用场景,具体选择哪种电源模块
    的头像 发表于 12-29 14:39 865次阅读
    DC<b class='flag-5'>电源模块</b>和AC<b class='flag-5'>电源模块</b>都有各自的优点和适用场景

    如何解决DC-DC电源模块出现的故障?

    DC-DC电源模块的作用是将输入电压转换为所需的输出电压,广泛应用于电子产品、汽车电子、医疗设备、通信系统等领域。但是在使用过程中DC电源模块会出现一些故障和问题,影响电源模块和其它电路器件的性能。因此,纳米软件将为
    的头像 发表于 11-28 14:55 1321次阅读
    如何解决DC-DC<b class='flag-5'>电源模块</b>出现的故障?

    电源模块的好坏都有哪些检测方法?

    检测电源模块质量好坏的方法多种多样,可以通过外观、电源模块指示灯等快速判断,也可以通过用万用表和示波器进行测量来检测电源模块的质量。
    的头像 发表于 11-20 16:48 3426次阅读
    <b class='flag-5'>电源模块</b>的好坏都有哪些检测方法?