0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

EV中自动驾驶的功耗挑战

Xilinx赛灵思官微 来源:瑞萨电子 作者:Hirotaka Hara 2021-08-09 11:19 次阅读

作者:Hirotaka Hara

Senior Distinguished Engineer

下一代汽车的车辆电子系统正在以电动化和自动驾驶中心发展。图中描述了车辆电控系统的演进。

753af826-f882-11eb-9bcf-12bb97331649.jpg

现有的车辆电子控制系统中,由于每个功能域由驾驶员直接控制,因此每个域之间的通信是松散耦合的,并且为了不受其它域的影响,域之间是相对独立的。另一方面,自动驾驶时代的电控系统是由一个名为Vehicle computer的中央控制系统来代替驾驶员来控制自动驾驶功能,各域之间的通信会相对多一些(紧耦合),域之间的独立性会低一些。

此外,随着控制程序的规模呈指数级增长,安全的OTA(Over the air)变得至关重要,OTA的目标硬件将从终端硬件转向中心硬件,以确保OTA的控制。(紫色箭头)此外,中控系统与Cloud之间的通信也是系统的必备条件。

EV自动运转中的电力影响

接下来,我们将讨论EV中自动驾驶的功耗挑战。

我们来考虑一下典型的EV汽车行驶100Km所需的电池容量。例如,如果您以EPA城市模式行驶,100公里时耗电量为14.6 KWh,但如果您以22.7 Km的平均时速在城市中行驶,100公里需要4.4小时。

这里考虑到目前的Robo taxi,假设整个自动驾驶功能耗电量为2KW左右,行驶4.4小时需要8.8 KWh的电量,如果这辆EV车的搭载电池为75KWh,那么在100Km自动行驶过程中,自动驾驶功能消耗了12%的电池容量。

为了让这个电池容量的消耗降到1%以下,整个自动驾驶功能的功耗必须降到150W以下。在自动驾驶中,消耗最多计算功率的深度学习的低功耗是多么重要,从这个数字也可以看出。而且,随着深度学习的应用领域今后也将不断增加,这一改进在SDGs和ESG的观点上也将变得更加重要。

边缘设备异构计算中的性能优化

与数据中心中使用的CPUGPU不同,边缘设备的电源和目标成本受到严格限制。因此,在边缘设备中,异构体系结构与硬件或特定应用处理器相结合,具有最适合目标应用的功能,是产品的关键。因此,在ADAS和AD领域,R-Car V系列提供硬件IP,可编程处理器和CPU的组合LSI。下图显示了R-Car V3H的硬件配置示例。

采用Streaming Architecture

ADAS和AD领域的深度学习引擎(CNN-IP)需要较高的TOPS值,CNN-IP的低功耗是决定整个芯片功率的一大因素。因此,Renesas采用了多种体系结构中能效最高的Streaming architecture。在Streaming Architecture中,CNN-IP最大限度地减少了对外部存储器的访问,并以低功耗在每个处理器元件(PE)和SRAM之间高效地传输数据。

瑞萨的ADAS/AD在执行深度学习时的LSI功率目标在前摄ECU中为5W或更低,在中央ADAS ECU中为30W或更低,这使得系统的风冷散热成为可能。这些功率目标成为在量产普及车中实际应用ADAS/AD系统的重要指标。

瑞萨的AI架构

在自动驾驶领域,深度学习的应用将继续推进,适应新的网络将变得至关重要。因此,除了Streaming architecture以外,面向特定用途的添加了programmable processor的形式也被定义为面向汽车的AI computing architecture,并继续进行开发。在Streaming processor侧对占现状调整的95%以上的卷积运算、Activation、Pooling处理等进行处理,在programmable processor侧对应新的函数,寻求兼顾电力和灵活性。

最后,我将介绍瑞萨汽车AI解决方案的应用开发中不可或缺的开发工具。汽车AI需要不同的开发环境,包括相机,网关和中央ADAS,如下图所示,我们与在R-Car联盟多年合作的强大合作伙伴提供交钥匙解决方案和应用开发工具。

有关更多信息,请访问R-Car联盟。

编辑:jq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • OTA
    OTA
    +关注

    关注

    7

    文章

    568

    浏览量

    35157
  • Ev
    Ev
    +关注

    关注

    2

    文章

    207

    浏览量

    35725
  • 自动驾驶
    +关注

    关注

    783

    文章

    13700

    浏览量

    166182

原文标题:工程师说 | 新一代汽车深度学习架构趋势

文章出处:【微信号:赛灵思,微信公众号:Xilinx赛灵思官微】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    标贝科技:自动驾驶的数据标注类别分享

    自动驾驶训练模型的成熟和稳定离不开感知技术的成熟和稳定,训练自动驾驶感知模型需要使用大量准确真实的数据。据英特尔计算,L3+级自动驾驶每辆汽车每天产生的数据高达4000GB,作为自动驾驶
    的头像 发表于 11-22 15:07 791次阅读
    标贝科技:<b class='flag-5'>自动驾驶</b><b class='flag-5'>中</b>的数据标注类别分享

    MEMS技术在自动驾驶汽车的应用

    MEMS技术在自动驾驶汽车的应用主要体现在传感器方面,这些传感器为自动驾驶汽车提供了关键的环境感知和数据采集能力。以下是对MEMS技术在自动驾驶汽车
    的头像 发表于 11-20 10:19 236次阅读

    自动驾驶汽车安全吗?

    随着未来汽车变得更加互联,汽车逐渐变得更加依赖技术,并且逐渐变得更加自动化——最终实现自动驾驶,了解自动驾驶汽车的安全问题变得非常重要,这样你才能回答“自动驾驶汽车安全吗”和“
    的头像 发表于 10-29 13:42 454次阅读
    <b class='flag-5'>自动驾驶</b>汽车安全吗?

    自动驾驶HiL测试方案案例分析--ADS HiL测试系统#ADAS #自动驾驶 #VTHiL

    自动驾驶
    北汇信息POLELINK
    发布于 :2024年10月22日 15:20:19

    自动驾驶HiL测试方案介绍#ADAS #自动驾驶 #VTHiL

    自动驾驶
    北汇信息POLELINK
    发布于 :2024年10月12日 18:02:07

    自动驾驶仿真测试技术面临的挑战#ADAS #智能驾驶 #VTHiL

    自动驾驶
    北汇信息POLELINK
    发布于 :2024年10月12日 09:49:31

    FPGA在自动驾驶领域有哪些优势?

    FPGA(Field-Programmable Gate Array,现场可编程门阵列)在自动驾驶领域具有显著的优势,这些优势使得FPGA成为自动驾驶技术不可或缺的一部分。以下是FPGA在
    发表于 07-29 17:11

    FPGA在自动驾驶领域有哪些应用?

    是FPGA在自动驾驶领域的主要应用: 一、感知算法加速 图像处理:自动驾驶需要通过摄像头获取并识别道路信息和行驶环境,这涉及到大量的图像处理任务。FPGA在处理图像上的运算速度快,可并行性强,且
    发表于 07-29 17:09

    自动驾驶的传感器技术介绍

    自动驾驶的传感器技术是自动驾驶系统的核心组成部分,它使车辆能够感知并理解周围环境,从而做出智能决策。以下是对自动驾驶传感器技术的详细介绍,内容涵盖常见类型、工作原理、在自动驾驶
    的头像 发表于 07-23 16:08 2116次阅读

    未来已来,多传感器融合感知是自动驾驶破局的关键

    的Robotaxi运营。这标志着L4级自动驾驶迎来了新的里程碑,朝着商业化落地迈进了一大步。中国的车企也不甘落后:4月7日,广汽埃安与滴滴自动驾驶宣布合资公司——广州安滴科技有限公司获批工商执照。广汽埃安
    发表于 04-11 10:26

    自动驾驶发展问题及解决方案浅析

    汽车的发展提供有益的参考。   自动驾驶汽车发展的现状与挑战 (一)技术难题 自动驾驶汽车的核心在于通过先进的传感器、算法和控制系统实现车辆的自主驾驶。然而,在实际应用
    的头像 发表于 03-14 08:38 1079次阅读

    如何构建低功耗自动驾驶系统?

    实现全自动车辆所面临的电池容量挑战之一是:如何处理来自各种源头的大量感测数据,并将相关神经网络处理应用上,同时保持小功耗足迹和最小延迟。这也是整个电动汽车行业迟早要面对的挑战。为了让
    的头像 发表于 12-27 15:57 212次阅读
    如何构建低<b class='flag-5'>功耗</b><b class='flag-5'>自动驾驶</b>系统?

    语音数据集在自动驾驶的应用与挑战

    随着人工智能技术的快速发展,自动驾驶汽车已经成为交通领域的研究热点。语音数据集在自动驾驶中发挥着重要的作用,为驾驶员和乘客提供了更加便捷和安全的交互方式。本文将详细介绍语音数据集在自动驾驶
    的头像 发表于 12-25 09:48 527次阅读

    LabVIEW开发自动驾驶的双目测距系统

    达到950以上,而在其他较弱纹理区域也能维持在900左右。误差率低至5%以下,甚至在特征点明显的标志物上可达到2%左右。 基于LabVIEW的双目测距系统在自动驾驶具有广泛的应用前景,它可以为车辆提供
    发表于 12-19 18:02

    自动驾驶的新宠:毫米波雷达技术的探索与挑战

    随着科技的不断进步,自动驾驶汽车的发展已经成为交通产业的一大趋势。在这个过程,毫米波雷达技术的应用发挥着至关重要的作用。本文将对毫米波雷达技术进行详细介绍,并分析其在自动驾驶领域的应用,最后探讨该技术的发展趋势和
    的头像 发表于 12-07 11:32 1659次阅读
    <b class='flag-5'>自动驾驶</b>的新宠:毫米波雷达技术的探索与<b class='flag-5'>挑战</b>