0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于 U-Net 的医学影像分割算法

h1654155999.2342 来源:UNknown知识库 作者:UNknown知识库 2021-08-25 17:36 次阅读

来源:UNknown知识库

一、医学图像分割简介

医学影像分割是医学影像分析中的重要领域,也是计算机辅助诊断、监视、干预和治疗所必需的一环,其关键任务是对医学影像中感兴趣的对象(例如器官或病变)进行分割,可以为疾病的精准识别、详细分析、合理诊断、预测与预防等方面提供非常重要的意义和价值。

在医学影像分割任务中,目前主要存在以下几个难点:

标注数据少。造成该问题的一个重要的原因是收集标注困难,手工标注医学影像是一个费时费力的过程,而这个标注过程在实际的临床实践中可能并不需要。

传感器噪声或伪影。现代医学影像最基本的成像模态有 X 光、超声、CT 和 MRI 等,用于成像的医学设备会存在物理噪声和图像重建误差,而医学影像模态和成像参数设定的差别则会造成不同大小的伪影。

分割目标形态差异大。患者之间存在高矮胖瘦等体型差异,且病变的大小、形状和位置可能存在巨大差异,因此解剖结构上会有差异。不同的分割部位也存在差异,往往需要不同的算法,有时还需要考虑到先验知识的加入。

组织边界信息弱。人体内部的一些器官都是具有相似特征的软组织,它们相互接触且边界信息非常弱,而胰腺肿瘤、肝肿瘤、肾脏肿瘤等边界不清楚的肿瘤往往还非常小,导致很难被识别到。

二、基于 U-Net 的医学影像分割算法

1

U-Net

U-Net 是医学影像分割领域著名的一个网络架构,在 2015 年由 Ronneberger等人参加 ISBI Challenge 提出的一种基于 FCN 的分割网络。经过修改和扩展后的 U-Net 能够适应很小的训练集,并且输出更加精确的分割结果。

U-Net 的上采样过程中依然有大量通道,这使得网络将上下文信息向更高分辨率传播,且其扩展路径与收缩路径对称,形成了一个 U 型的形状段,并通过跳跃连接的方式融合来自不同阶段的特征图。

当面对医学影像分割任务时,U-Net 这种扩展路径和收缩路径所组成的编码—解码的网络架构成为了首选,同时发展出很多变体。

2

加入密集连接的 U-Net 算法

密集连接的思想来自于 DenseNet,在 DenseNet 出现之前,卷积神经网络的进化一般通过层数的加深或者加宽进行,DenseNet 通过对特征的复用提出了一种新的结构,不但减缓了梯度消失的现象同时模型的参数量也更少。

U-Net++ 网络架构在 2018 年被 Zhou 等人提出,创新点在于将密集连接加入 U-Net 网络,从而引入深度监督的思想,并通过重新设计的跳跃连接路径把不同尺寸的U-Net 结构融入到了一个网络里。

在原始的U-Net网络架构上,UNet++ 加入了更多的跳跃连接路径和上采样卷积块,用于弥补编码器和解码器之间的语义鸿沟。中间隐藏层使用的深度监督一方面可以解决 U-Net++ 网络训练时的梯度消失问题,另一方面允许网络在测试的阶段进行剪枝,减少模型的推断时间。

U-Net++ 网络架构的第一个优势就是精度的提升,这是由于它整合了不同层次的特征,第二个是灵活的网络结构配合深度监督,让参数量巨大的深度神经网络在可接受的精度范围内大幅度地缩减参数量。

但是因为多次跳跃连接操作,同样的数据在网络中会存在多个复制,模型训练时的显存占用相对较高,需要采用一些显存优化技术来更好地训练模型。

3

融合残差思想的 U-Net 算法

神经网络因为宽度和深度的增加,会面临梯度消失或梯度爆炸引起的网络退化问题,为此 He 等人提出了残差网络(ResNet)。残差块的输入通过残差路径直接叠加到残差块的输出之中,残差块会尝试去学习并拟合残差以保证增加的网络层数不会削弱网络的表达性能。

2019年 Ibtehaz 等人提出了 MultiResUNet 网络,MultiResUNet 运用残差思想改造了 U-Net 中的卷积块和跳跃连接。MultiResNet 使用一系列 3×3 卷积核来模拟 5×5 卷积核和 7×7 卷积核的感受野,卷积块的输入经过 1×1 卷积核后经由残差路径直接与卷积后的输入叠加,作者称之为 MultiResblock,在减少网络计算量的同时可以提取不同尺度的空间特征。

作者同时提出了 ResPath 来减少跳跃连接过程中所丢失的空间信息,ResPath 由一系列的 3×3 卷积、1×1卷积和残差路径组成,编码器的输入特征图经过 ResPath 与解码器特征图连接,一方面减少了语义鸿沟,另一方面增强了网络的学习能力。

4集成注意力机制的 U-Net 算法

注意力机制借鉴了人类的注意力思维方式,最初被应用于基于 RNN 循环神经网络模型的图像分类、自然语言处理等深度学习任务中并取得了显著成果。2018年 Oktay 等人提出了 Attention U-Net 网络架构。

AttentionU-Net 在对扩展路径每个阶段上的特征图与收缩路径中对应特征图进行拼接之前,使用了一个注意力门抑制无关区域中的特征激活来提高模型的分割准确性,在达到高分割精度的同时而无需额外的定位模块。

与 U-Net 和相比,AttentionU-Net 在胰腺和腹部多器官分割数据集上,提升了分割的精度,同时减少了模型训练和推理的时间。

5

面向 3D 影像的 U-Net 算法

3D U-Net 网络架构是原始 U-Net 网络架构的一个简单扩展,由 U-Net 的研究团队在 2016 年提出并应用于三维图像分割。因为电脑屏幕上只能展示二维的切片,所以直接在三维层面上标注分割标签比较困难。与此同时,相邻的二维切片往往包含了近似的图片信息。

基于上述两个事实,作者提出了只需要稀疏标注的二维图像进行训练的 3D U-Net 网络架构。3D U-Net 通过将 U-Net 原来的 2D 卷积、池化、上采样操作替换成对应的 3D 操作,并加入 Batch Normalization 层实现了对三维医学影像的直接分割。

2016年 Milletari 等人提出了 V-Net 网络架构,是原始 U-Net 网络架构的另一种 3D 实现。V-Net 相比 3D U-Net 最大的亮点在于吸收了 ResNet 的思想,在网络拓展路径和收缩路径的每个阶段中都引入残差学习的机制。同时,V-Net 以步长为 2 的 2×2×2 卷积核取代拓展路径里的池化操作来降低特征图的分辨率。

V-Net 和 3D U-Net 都是针对三维医学影像所直接构建的端到端的深度卷积神经网络,目的是运用 3D 卷积从三维进行编码,以良好的分割某些在二维没有明显表征的病理。3D分割算法在利用医学影像的三维组织连通性方面具有优势,但相较2D分割算法其参数量更多,训练和推理过程对设备的算力要求更高。

参考资料:彭璟,罗浩宇,赵淦森等《深度学习下的医学影像分割算法综述》

—版权声明—

仅用于学术分享,版权属于原作者。

若有侵权,请联系删除或修改!

编辑:jq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 网络架构
    +关注

    关注

    1

    文章

    92

    浏览量

    12565
  • 深度
    +关注

    关注

    0

    文章

    12

    浏览量

    8834
  • 卷积神经网络

    关注

    4

    文章

    366

    浏览量

    11844
  • rnn
    rnn
    +关注

    关注

    0

    文章

    88

    浏览量

    6872

原文标题:基于 U-Net 的医学影像分割算法综述

文章出处:【微信号:gh_f39db674fbfd,微信公众号:尖刀视】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    Dell PowerScale数据湖助力医研一体化建设

    近年来,医疗影像设备不断向更高水平和精密化发展,推动医疗服务向更高更快的品质发展。基于医学影像多学科会诊的协作、智能辅助诊断、智能质控、智能术前规划,将快速推进各项医学科研成果进行规范化的临床应用与转化。
    的头像 发表于 10-16 10:13 277次阅读

    UNet模型属于哪种神经网络

    U-Net模型属于卷积神经网络(Convolutional Neural Network, CNN)的一种特殊形式 。它最初由德国弗莱堡大学计算机科学系的研究人员在2015年提出,专为生物医学图像
    的头像 发表于 07-24 10:59 2161次阅读

    医学影像存储与传输系统源码,PACS系统源码

     医学影像存储与传输系统中,PACS部分主要提供医学影像获取、影像信息网络传递、大容量数据存储、影像显示和处理、影像打印等功能。RIS主要提
    的头像 发表于 07-18 16:31 310次阅读
    <b class='flag-5'>医学影像</b>存储与传输系统源码,PACS系统源码

    图像语义分割的实用性是什么

    图像语义分割是一种重要的计算机视觉任务,它旨在将图像中的每个像素分配到相应的语义类别中。这项技术在许多领域都有广泛的应用,如自动驾驶、医学图像分析、机器人导航等。 一、图像语义分割的基本原理 1.1
    的头像 发表于 07-17 09:56 349次阅读

    图像识别技术在医疗领域的应用

    的应用已经成为推动医疗技术发展的重要力量。 二、医学影像诊断 医学影像诊断是图像识别技术在医疗领域应用最为广泛和成熟的领域之一。医学影像诊断主要包括X射线、CT、MRI、超声等影像技术
    的头像 发表于 07-16 10:48 722次阅读

    卷积神经网络在图像和医学诊断中的优势

    随着人工智能技术的迅猛发展,卷积神经网络(Convolutional Neural Network,简称CNN)作为一种深度学习的代表算法,在图像处理和医学诊断领域展现出了巨大的潜力和优势。CNN
    的头像 发表于 07-01 15:59 847次阅读

    利用NVIDIA的nvJPEG2000库分析DICOM医学影像的解码功能

    本文将深入分析 DICOM 医学影像的解码功能。AWS HealthImaging 利用 NVIDIA 的 nvJPEG2000 库来实现此功能。
    的头像 发表于 05-28 14:27 710次阅读
    利用NVIDIA的nvJPEG2000库分析DICOM<b class='flag-5'>医学影像</b>的解码功能

    AI医学影像企业深智透医完成B+轮近千万美元融资

    AI医学影像领域的领军企业深智透医(Subtle Medical Inc.)近日成功完成了B+轮近千万美元的融资,使其累计融资额超过五千万美元。此次融资的注入,将为公司全球商业拓展和产品研发创新提供强大的资金支持。
    的头像 发表于 05-14 10:08 446次阅读

    基于门控线性网络(GLN)的高压缩比无损医学图像压缩算法

    实现基于门控线性网络(GLN)的高压缩比无损医学图像压缩算法,以提高医学图像存储和分发系统的效率。与“传统”的基于上下文的数据压缩算法相比,基于GLN的系统使用一组不同的上下文模型。
    的头像 发表于 04-08 10:29 611次阅读
    基于门控线性网络(GLN)的高压缩比无损<b class='flag-5'>医学</b>图像压缩<b class='flag-5'>算法</b>

    西门子医疗与山东第一医科大学放射学院达成战略合作

    校企携手培育医学影像高端人才,虚实融生引领教育培训崭新模式 共建全国首个"医学影像元宇宙沉浸式教研示范学院" 探索实施"产学研用"四位一体的校企联合定向培养计划 促进各层级医研产学人才交叉培养与有机
    的头像 发表于 01-30 14:33 870次阅读
    西门子医疗与山东第一医科大学放射学院达成战略合作

    Harvard FairSeg:第一个用于医学分割的公平性数据集

    为了解决这些挑战,我们提出了第一个大规模医学分割领域的公平性数据集, Harvard-FairSeg。该数据集旨在用于研究公平性的cup-disc segmentation,从SLO眼底图像中诊断青光眼,如图1所示。
    的头像 发表于 01-25 16:52 512次阅读
    Harvard FairSeg:第一个用于<b class='flag-5'>医学分割</b>的公平性数据集

    基于YOLOv8的自定义医学图像分割

    YOLOv8是一种令人惊叹的分割模型;它易于训练、测试和部署。在本教程中,我们将学习如何在自定义数据集上使用YOLOv8。但在此之前,我想告诉你为什么在存在其他优秀的分割模型时应该使用YOLOv8呢?
    的头像 发表于 12-20 10:51 725次阅读
    基于YOLOv8的自定义<b class='flag-5'>医学</b>图像<b class='flag-5'>分割</b>

    轻松实现医学影像 AI:NVIDIA 提供 MONAI 托管云服务

    这项创新服务具有用于交互式 AI 标注和训练的强大 API,可以加速医学影像解决方案发展。 NVIDIA 推出医学影像 AI 云服务,通过全托管的云端应用程序编程接口(API),进一步简化和加速真值
    的头像 发表于 11-30 19:35 474次阅读

    为什么需要分割U-Net能提供什么?U-Net和自编码器的区别

    U-Net是一种卷积神经网络(CNN)方法,由Olaf Ronneberger、Phillip Fischer和Thomas Brox于2015年首次提出,它可以更好的分割生物医学图像。
    的头像 发表于 11-25 11:38 4677次阅读
    为什么需要<b class='flag-5'>分割</b>?<b class='flag-5'>U-Net</b>能提供什么?<b class='flag-5'>U-Net</b>和自编码器的区别

    NVIDIA 知乎精彩问答甄选 | 分享 NVIDIA 助力医学研究的相关精彩问答

    您分享  NVIDIA 助力医学研究的具体实践。 Q: 药物研发的大神们可以解答一下生成式 AI 在这一领域带来了 哪 些新变化吗? A: 如今,放射科医师使用 AI 来检测医学影像中的异常情况,医生使用 AI 扫描电子病历以了解患者的病情,研究人员则使用 AI 来加速新
    的头像 发表于 11-24 19:25 535次阅读
    NVIDIA 知乎精彩问答甄选 | 分享 NVIDIA 助力<b class='flag-5'>医学</b>研究的相关精彩问答