0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

八种常见的数据分析方法介绍

数据分析与开发 来源:胖里的日常 作者:胖里 2021-09-14 09:44 次阅读

不能度量,就无法增长。

数据分析对于企业商业价值的提升起到了至关重要的作用。在具体的业务场景中,一般有八种常见的数据分析方法。

1

数字和趋势

采用数字和趋势图进行数据信息的展示最为直观,从具体的数字和趋势走向中可以更好地得到数据信息,有助于提高决策的准确性和实时性。

比如将某app或某网站的uv、pv等指标统一汇总到一个数据看板上,进行实时更新。这样的一个数据看板使得数字和趋势一目了然,非常直观。

2

维度分解

当单一的数字或趋势过于宏观时,我们可以通过不同维度对数据进行分解,以获取更加精细的数据洞察。在进行维度选择时,需要考虑此维度对于分析结果的影响。 比如某app的日活突然下降了,可以通过拆分新老用户、渠道、app版本、地区、设备等维度,发现问题所在,也就是将宏观的问题拆分成小的问题去聚焦问题所在。

3

用户分群

用户分群即指针对符合某种特定行为或具有共同背景信息的用户,进行归类处理。也可通过提炼某一类用户的特定信息,为该群体创建用户画像。 例如使用同一app的用户可以按照地址进行用户群体的划分,可分为“北京”、“上海”、“杭州”等。由此便可进一步观察某一用户群体的一些行为或数据指标,如app使用时长,使用频度,购买次数、购买金额等,以此来创建该用户群体的画像。 用户分群的意义在于我们可以针对具有特定行为或特定背景的用户,进行针对性的用户运营和产品优化,比如对具有“放弃支付或支付失败”的用户进行对应优惠券的发放,以此来实现精准营销,大幅提高用户的支付意愿和成交量。

4

转化漏斗

かけすな

绝大部分商业变现的流程,都可归纳为漏斗。漏斗分析是常见的一种数据分析手段,比如常见的用户注册转化漏斗,电商下单漏斗。整个漏斗分析的过程就是用户从前到后转化的路径,通过漏斗分析可以得到转化效率。 这其中包含三个要点:其一,整体的转化效率。 其二,每一步(转化节点)的转化效率。 其三,在哪一步流失最多,原因是什么,这些流失的用户具有什么特征。 上图是共包括三步的注册流程,整个注册流程的总体转化率为46.5%,即1000个访问了注册页的用户中,有465个成功完成了注册。关注到每一步的转化率,发现第二步的转化率为65.3%,明显低于第一步的85.3%和第三步的83.5%,由此可推测,这一步骤可能存在问题。可针对这一注册步骤去发现问题,再进行转化率的提高。

5

行为轨迹

数据指标本身只是真实情况的一种抽象,通过关注用户的行为轨迹,才能更真实地了解用户的行为。 例如只看到常见的uv和pv指标,是无法理解用户是如何使用你的产品的。通过大数据手段来还原用户的行为轨迹,可以更好地关注用户的实际体验,从而发现具体问题。如果维度分解依旧难以确定某个问题所在,可通过分析用户行为轨迹,发现一些产品及运营中的问题。

6

留存分析

人口红利逐渐消退,拉新变得并不容易,此时留住一个老用户的成本往往要远低于获取一个新用户的成本,因此用户留存成为了每个公司都需要关注的问题。可以通过分析数据来了解留存的情况,也可以通过分析用户行为找到提升留存的方法。 如某阅读类app,每天阅读时长在25-30分钟(举个)的用户的留存要远高于阅读时长在5-10分钟的用户的留存,因此可考虑将提高用户的阅读时长作为一种提升留存的方式。 常见的留存分析场景还包括不同渠道的用户的留存、新老用户的留存以及一些新的运营活动及产品功能的上线对于用户回访的影响等。

7

A/B测试

A/B测试通常用于测试产品新功能的上线、运营活动的上线、广告效果及算法等。 比如某产品设计了两种不同的界面(图来源于网络),其中包括界面背景颜色变化、点击按钮文案变化,模特变化等。以点击按钮的设计为例,通过比较实验组(A)和对照组(B)的按钮点击次数、点击率两个指标,来评估哪一种点击按钮的设计带来的效果更好。 进行A/B测试需要两个必备因素:第一,足够的测试时间;第二,较高的数据量和数据密度。 当产品的流量不够大时,进行A/B测试很难得到统计结果。

8

数学建模

涉及到用户画像、用户行为的研究时,通常会选择使用数学建模、数据挖掘等方法。比如通过用户的行为数据、相关信息、用户画像等来建立所需模型解决对应问题。 实践出真知,希望大家能在日常工作、学习或项目中尝试使用上述方法,创造更多的商业价值。

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 测试
    +关注

    关注

    8

    文章

    5362

    浏览量

    126900
  • 数据
    +关注

    关注

    8

    文章

    7118

    浏览量

    89342
  • 分析
    +关注

    关注

    2

    文章

    134

    浏览量

    33324

原文标题:浅谈数据分析常用的 8 种方法

文章出处:【微信号:DBDevs,微信公众号:数据分析与开发】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    ADC12D1800RF使用DESCLKIQ模式采样数据分析时二次谐波大,有什么方法可以改善?

    请问利用ADC12D1800RF参考电路设计,对比于数据手册,使用DESCLKIQ模式采样数据分析时二次谐波大,有什么方法可以改善?
    发表于 01-02 07:14

    Mathematica 在数据分析中的应用

    数据分析是现代科学研究和商业决策中不可或缺的一部分。随着数据量的爆炸性增长,对数据分析工具的需求也在不断增加。Mathematica,作为一强大的计算软件,以其独特的符号计算能力和广
    的头像 发表于 12-26 15:41 160次阅读

    绝缘电阻测试仪数据分析与处理

    绝缘电阻测试仪主要用于检查电气设备或电气线路对地及相间的绝缘电阻。将所测得的结果与有关数据比较,这是对实验结果进行分析判断的重要方法。以下是对绝缘电阻测试仪的数据分析与处理
    的头像 发表于 12-10 15:00 359次阅读

    数据可视化与数据分析的关系

    的含义。 数据分析的定义与作用 数据分析是一使用统计和逻辑方法分析数据集的过程,目的是发现模
    的头像 发表于 12-06 17:09 396次阅读

    eda与传统数据分析的区别

    EDA(Exploratory Data Analysis,探索性数据分析)与传统数据分析之间存在显著的差异。以下是两者的主要区别: 一、分析目的和方法论 EDA 目的 :EDA的主要
    的头像 发表于 11-13 10:52 385次阅读

    raid 在大数据分析中的应用

    RAID(Redundant Array of Independent Disks,独立磁盘冗余阵列)在大数据分析中的应用主要体现在提高存储系统的性能、可靠性和容量上。以下是RAID在大数据分析
    的头像 发表于 11-12 09:44 275次阅读

    物联网的数据分析方法

    方法进行处理,以便转化为可操作的洞察。 1. 数据收集 物联网数据分析的第一步是数据收集。物联网设备通过各种传感器收集数据,这些传感器可以监
    的头像 发表于 10-29 11:27 626次阅读

    云计算在大数据分析中的应用

    云计算在大数据分析中的应用广泛且深入,它为用户提供了存储、计算、分析和预测的强大能力。以下是对云计算在大数据分析中应用的介绍: 一、存储和处理海量
    的头像 发表于 10-24 09:18 546次阅读

    加法运放电路实验报告数据分析

    加法运放电路实验报告的数据分析主要包括对实验结果的观察、与理论值的对比以及误差原因的分析。以下是一个基于常见加法运放电路实验的数据分析示例: 一、实验目的与原理 实验目的 :了解加法器
    的头像 发表于 09-03 10:03 967次阅读

    数据分析除了spss还有什么

    Sciences)是一款非常流行的统计分析软件,但除了SPSS之外,还有许多其他数据分析工具和方法。 引言 数据分析是一个跨学科的领域,涉及到统计学、计算机科学、
    的头像 发表于 07-05 15:01 693次阅读

    数据分析的工具有哪些

    数据分析是一个涉及收集、处理、分析和解释数据以得出有意义见解的过程。在这个过程中,使用正确的工具至关重要。以下是一些主要的数据分析工具,以及它们的功能和用途的
    的头像 发表于 07-05 14:54 981次阅读

    数据分析有哪些分析方法

    数据分析是一重要的技能,它可以帮助我们从大量的数据中提取有价值的信息,从而做出更明智的决策。在这篇文章中,我们将介绍数据分析的各种
    的头像 发表于 07-05 14:51 692次阅读

    机器学习在数据分析中的应用

    随着大数据时代的到来,数据量的爆炸性增长对数据分析提出了更高的要求。机器学习作为一强大的工具,通过训练模型从数据中学习规律,为企业和组织提
    的头像 发表于 07-02 11:22 731次阅读

    求助,关于AD采集到的数据分析问题

    MATLAB中画图后能看到几个周期的图像 数据特征:在matlab中能看到图像是由两部分构成,一部分是基波及其n次谐波,即存在上升沿,过冲,另一部分是随机噪声 求各位大神科普数据分析方法(稍后传MATLAB图像)
    发表于 05-09 07:40

    态势数据分析系统软件

    智慧华盛恒辉态势分析软件系统的功能描述、部署环境、界面使用、技术支持及一些常见问题及其解决办法等。为数据态势分析软件系统的管理人员和使用人员提供说明。 智慧华盛恒辉态势
    的头像 发表于 04-22 11:36 471次阅读