0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

自动驾驶为什么会识别不出静止物体

蘑菇车联 来源:蘑菇车联 作者:蘑菇车联 2021-09-14 09:57 次阅读

关于蘑菇说:

自动驾驶技术正在逐渐走进你我的生活,不少人对它充满好奇。有人已经在街头看到过自动驾驶的车辆,甚至体验过自动驾驶服务,也有人对这项新技术感到陌生,甚至心存疑虑。

作为全球领先的自动驾驶全栈技术和运营服务提供商,蘑菇车联官方微信公众号将从即日起开设一档自动驾驶科普专栏,讲解大家关心的技术知识、畅享未来的出行生活。同时欢迎读者评论、留言、私信,把想了解的问题发给我们,我们将尽力解答。

本期将从“为什么自动驾驶难以识别静止物体”的话题开始。

今年 5 月,美国网友Joel Johnson在YouTube上发布了一条视频:一辆谷歌Waymo自动驾驶出租车,在遇到建筑工地放置的一排交通锥后,系统受到迷惑,不再前行,停在凤凰城郊区一条繁忙的马路中间,造成了14分钟的交通堵塞。

除了交通锥,绝大多数意外出现的静止障碍物都是自动驾驶的大敌。2019年,在美国印第安纳州,一位用户驾驶特斯拉Model 3在州际公路撞上了一辆静止停放的消防车。事后报告称:特斯拉未能观察到停放在车道上的消防车。Model 3今年3月和7月的两起事故同样源自撞上停放的汽车。

Waymo和特斯拉分别代表了当今自动驾驶阵营中的“激光雷达+高精地图派”和“纯计算机视觉派”。对二者来说,静止目标的识别都非常难。

首先,路面上临时出现的路障、三角、警示牌、施工作业区由于出现的周期太短,往往无法被现成的自动驾驶高精地图收录。于是识别上述物体的任务落在本就压力山大的自动驾驶机器头上。

机器感知与人类感知的逻辑不同。人眼可以清晰看到前方路标、路牌、前车尾灯并将其分类,而机器识别的结果只能由数据和算法决定。开放道路场景千变万化,只要物体简单变换外观,就必须重新识别。机器或许能识别出一个推自行车的行人,但难以在短时间内识别一个戴皮卡丘头套推车的行人。数据场景库的丰富度和算法质量不足以应付这一罕见场景。

静止物体的感知和识别是更有难度的工作。在自动驾驶感知系统中,雷达“看到”的是点云,摄像头“看到”的是图像像素,二者数据特征不同,需要复杂的融合过程。反观移动的目标点,由于一直在变化,相对容易判断。而静止障碍物混在静止路牌、路标、绿植中,只有经过多轮筛选才能标识出。一旦算法不够成熟,很容易出现某一传感器识别出障碍物,但被承担巨大高速运转压力的算法当作错误或不重要数据直接过滤。

综合来看,自动驾驶难以识别静止物体的原因在于:这是一场没有高精地图支援,机器数据融合与筛选难度高,算法权重小,还经常遭遇罕见场景的感知“大考”。

这也是车路协同发挥价值的重要舞台。车路协同为自动驾驶感知提供及时、精确的信息保障。架设在路口交通灯杆高处的摄像头和雷达能够游刃有余地识别临时交通锥或应急车道停放的奇异拖车,通过V2X将其提前告知途径车辆。车辆在距静止障碍物较远时已做好防范,从而规避安全隐患。

在蘑菇车联的“车路云一体化”自动驾驶系统实践中,曾有这样一个案例。自动驾驶汽车途径4个为应对疫情而临时搭建的核酸检测站,站点周边还加设了密密麻麻的一米栏。通过车路协同,车辆逆向绕行避障,随后顺利回到车道。

在“车路云一体化”的体系中,路侧和云端感知理论上可以提前预知500m、1km、5km甚至10km外的所有静态和动态交通信息,实现全局感知,为自动驾驶汽车提供必要的预测、预警信息。这一系统目前应用在蘑菇车联位于北京、上海、江苏、浙江、湖北、四川等地的自动驾驶商业化项目,覆盖城市开放道路、园区、港口、机场、高速公路、高校等全场景。

及时、精确的信息获取是保障自动驾驶感知安全的根本前提。无论自动驾驶还是人类驾驶,行驶安全性都只取决于2个核心因素,一是有没有看到周围危险情况;二是能否及时决策或时间够不够及时处理。在信息获取精确及时性、决策时效性两个方面,车路协同都在大幅提升自动驾驶安全性。

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 特斯拉
    +关注

    关注

    66

    文章

    6311

    浏览量

    126548
  • 自动驾驶
    +关注

    关注

    784

    文章

    13784

    浏览量

    166399

原文标题:蘑菇说第四期 | 为什么自动驾驶难以识别静止物体?

文章出处:【微信号:moguzhixingmogo,微信公众号:蘑菇车联】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    基于改进ResNet50网络的自动驾驶场景天气识别算法

    摘要:为了充分利用自动驾驶汽车路测图像数据,增加行驶过程中对天气情况识别的准确性,提出了一种基于改进ResNet50网络的自动驾驶场景天气识别算法。该算法将SE模块与ResNet50网
    的头像 发表于 11-09 11:14 917次阅读
    基于改进ResNet50网络的<b class='flag-5'>自动驾驶</b>场景天气<b class='flag-5'>识别</b>算法

    自动驾驶汽车安全吗?

    随着未来汽车变得更加互联,汽车逐渐变得更加依赖技术,并且逐渐变得更加自动化——最终实现自动驾驶,了解自动驾驶汽车的安全问题变得非常重要,这样你才能回答“自动驾驶汽车安全吗”和“
    的头像 发表于 10-29 13:42 502次阅读
    <b class='flag-5'>自动驾驶</b>汽车安全吗?

    自动驾驶HiL测试方案案例分析--ADS HiL测试系统#ADAS #自动驾驶 #VTHiL

    自动驾驶
    北汇信息POLELINK
    发布于 :2024年10月22日 15:20:19

    自动驾驶HiL测试方案——摄像头仿真之视频注入#ADAS #自动驾驶 #VTHiL

    自动驾驶
    北汇信息POLELINK
    发布于 :2024年10月17日 15:18:41

    自动驾驶HiL测试方案 ——场景仿真3D演示#ADAS #自动驾驶 #VTHiL

    自动驾驶
    北汇信息POLELINK
    发布于 :2024年10月16日 10:55:35

    自动驾驶HiL测试方案介绍#ADAS #自动驾驶 #VTHiL

    自动驾驶
    北汇信息POLELINK
    发布于 :2024年10月12日 18:02:07

    FPGA在自动驾驶领域有哪些优势?

    领域的主要优势: 高性能与并行处理能力: FPGA内部包含大量的逻辑门和可配置的连接,能够同时处理多个数据流和计算任务。这种并行处理能力使得FPGA在处理自动驾驶中复杂的图像识别、传感器数据处理等
    发表于 07-29 17:11

    FPGA在自动驾驶领域有哪些应用?

    是FPGA在自动驾驶领域的主要应用: 一、感知算法加速 图像处理:自动驾驶中需要通过摄像头获取并识别道路信息和行驶环境,这涉及到大量的图像处理任务。FPGA在处理图像上的运算速度快,可并行性强,且功耗
    发表于 07-29 17:09

    自动驾驶汽车如何识别障碍物

    自动驾驶汽车识别障碍物是一个复杂而关键的过程,它依赖于多种传感器和技术的协同工作。这些传感器主要包括激光雷达(LiDAR)、雷达、摄像头以及超声波雷达等,它们各自具有不同的工作原理和优势,共同为自动驾驶汽车提供全面的环境感知能力
    的头像 发表于 07-23 16:40 1159次阅读

    自动驾驶识别技术有哪些

    自动驾驶识别技术是自动驾驶系统中的重要组成部分,它使车辆能够感知并理解周围环境,从而做出智能决策。自动驾驶识别技术主要包括多种传感器及其融
    的头像 发表于 07-23 16:16 642次阅读

    深度学习在自动驾驶中的关键技术

    随着人工智能技术的飞速发展,自动驾驶技术作为其中的重要分支,正逐渐走向成熟。在自动驾驶系统中,深度学习技术发挥着至关重要的作用。它通过模拟人脑的学习过程,实现对车辆周围环境的感知、理解和决策。本文将深入探讨深度学习在自动驾驶中的
    的头像 发表于 07-01 11:40 755次阅读

    迎来“CASE”时代的汽车趋势和技术课题(3) ~自动驾驶识别引擎~

    本次作为迎来“CASE”时代的汽车趋势和技术课题的第三次,我们将介绍面向实际应用和实证实验突飞猛进的自动驾驶和掌控自动驾驶“认知”的识别引擎概要。 开发和实证实验取得进展的自动驾驶功能
    的头像 发表于 05-14 18:08 2735次阅读
    迎来“CASE”时代的汽车趋势和技术课题(3) ~<b class='flag-5'>自动驾驶</b>和<b class='flag-5'>识别</b>引擎~

    华为小米自动驾驶Occupancy Network对决

    2023年6月计算机视觉学术圈CVPR举办两场自动驾驶研讨,一个是端到端自动驾驶研讨 (End-to-End Autonomous Driving Workshop),另一个是视觉
    的头像 发表于 04-28 14:35 1007次阅读
    华为小米<b class='flag-5'>自动驾驶</b>Occupancy Network对决

    未来已来,多传感器融合感知是自动驾驶破局的关键

    的Robotaxi运营。这标志着L4级自动驾驶迎来了新的里程碑,朝着商业化落地迈进了一大步。中国的车企也不甘落后:4月7日,广汽埃安与滴滴自动驾驶宣布合资公司——广州安滴科技有限公司获批工商执照。广汽埃安
    发表于 04-11 10:26

    自动驾驶发展问题及解决方案浅析

    随着科技的飞速进步,自动驾驶汽车已经从科幻概念逐渐转变为现实。然而,在其蓬勃发展的背后,自动驾驶汽车仍面临一系列亟待解决的问题和挑战。本文将对这些问题进行深入的剖析,并提出相应的解决方案,以期为未来自动驾驶
    的头像 发表于 03-14 08:38 1132次阅读