0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

深入探究Xilinx Multiboot实例

OpenFPGA 来源:OpenFPGA 作者:碎碎思 2021-09-26 09:37 次阅读

原理

关于Multiboot的原理参考《Xilinx 7系列FPGA Multiboot介绍-远程更新》,基本原理都在此文写的很清楚,本文主要从实例出发演示Multiboot。

补充

FPGA SPI闪存配置接口

7系列FPGA和具有x1数据宽度的SPI闪存之间的基本连接。读取和地址指令通过主输出-从输入(MOSI)引脚从FPGA发送到SPI闪存。数据通过主输入从输出(MISO)引脚从SPI闪存返回。SCK是时钟引脚,SS是低电平从选择引脚。

参考:UG470

Vivado工具流程(Multiboot大致流程)

为Multiboot程序准备bit流

本节概述了为多引导应用程序创建和更新比特流所需的比特流属性。对于未指定的位流选项,请使用默认设置。

表1概述了用于生成和更新具有每个属性描述的位流的基本多引导位流属性。有关这些属性的详细说明,请参阅Vivado Design Suite用户指南:编程和调试(UG908)。

7a9449d8-1111-11ec-8fb8-12bb97331649.png

具体含义如下:

7ade4cea-1111-11ec-8fb8-12bb97331649.png

启用在配置尝试失败时加载默认位流
使用下一个配置映像的启动地址设置热启动启动启动地址(WBSTAR[28:0]位)寄存器
指定启用FPGA位流文件压缩
在Vivado中打开黄金设计实现(Golden)的约束文件(.xdc)。将以下内容复制粘贴到约束文件中,然后保存对.xdc文件所做的更改:

set_propertyBITSTREAM.CONFIG.CONFIGFALLBACKENABLE[current_design]
set_propertyBITSTREAM.CONFIG.NEXT_CONFIG_ADDR0x0400000[current_design]
set_propertyBITSTREAM.GENERAL.COMPRESSTRUE[current_design]
set_propertyBITSTREAM.CONFIG.SPI_BUSWIDTH1[current_design]

上述不理解没关系,后续实例会有使用教程
接下来,可以在更新设计(将要更新的文件)中打开约束文件(.xdc),并将以下比特流属性添加到约束文件中,然后保存:

set_propertyBITSTREAM.CONFIG.CONFIGFALLBACKENABLE[current_design]
set_propertyBITSTREAM.GENERAL.COMPRESSTRUE[current_design]
set_propertyBITSTREAM.CONFIG.SPI_BUSWIDTH1[current_design]

注:默认情况下,SPI_BUS为x1,如果未使用默认x1模式,请确保设置此属性。

生成SPI闪存编程文件

具体查看《【Vivado那些事】Vivado两种生成、固化烧录文件》。

使用write_cfgmem Tcl命令创建闪存编程文件(.mcs)。

write_cfgmem获取FPGA位流(.bit)并生成可用于编程SPI闪存的闪存文件(.mcs)。

例如,生成包含两个FPGA位流(.bit文件)的闪存编程文件(.mcs)文件,如下所示:

write_cfgmem-formatmcs-interfaceSPIX1-size16-loadbit"up0/golden.bitup
0x0400000/update.bit"/filename.mcs

注:地址值0x0400000是参考设计中使用的示例。应使用黄金图像(更新图像的起始地址)中设置的Addr A1值(见表1)。

请参阅Vivado Design Suite用户指南:编程和调试(UG908或使用Vivado中的-help命令,以了解每个write_cfgmem命令选项的详细说明:

write_cfgmem -help

硬件验证

硬件验证其实很简单,我们分别建立两个工程,两个工程都是流水灯程序,分别从左到右和从右到左流水灯,这样可以很清楚知道FPGA运行了哪个程序。接下来破坏golden程序,按照上述制作MCS文件后运行,看下运行哪个程序。

建立工程

详细的Verilog文件如下:

golden工程

moduleTop_MultiBoot_Module_A(
inputCLK,
outputreg[3:0]LED_Out
);


////////////////////////////////////////////

wireRESET;

assignRESET=1'b1;

////////////////////////////////////////////
//
//首先定义一个时间计数寄存器counter,每当达到预定的100ms时,
//计数寄存器就清零,否则的话寄存器就加1??//然后计算计数器计数的最大值。时钟频率为12MHZ??//也就是周期为1/12M ??3ns,要计数的最大值为T100MS= 100ms/83ns-1 = 120_4818??//

reg[31:0]counter;
parameterT100MS=25'd920_4818;

always@(posedgeCLK)

if(counter==T100MS)

counter<=25'd0;

else

counter<=counter+1'b1;
////////////////////////////////////////////
always@(posedgeCLKornegedgeRESET)
if(!RESET)
LED_Out<=4'b0001;//初值,最低位led[0]灯亮
elseif(counter==T100MS)
begin
if(LED_Out==4'b0000)//当溢出最高位时
LED_Out<=4'b0001;//回到复位时的状态
else
LED_Out<=LED_Out<<1;     //循环左移一位 
 end

endmodule // Run_LED

update工程

moduleTop_MultiBoot_Module_B(
inputCLK,
outputreg[3:0]LED_Out
);


////////////////////////////////////////////


wireRESET;

assignRESET=1'b1;


////////////////////////////////////////////
//
//首先定义一个时间计数寄存器counter,每当达到预定的100ms时,
//计数寄存器就清零,否则的话寄存器就加1��//然后计算计数器计数的最大值。时钟频率为12MHZ��//也就是周期为1/12M ��3ns,要计数的最大值为T100MS= 100ms/83ns-1 = 120_4818��//

reg[31:0]counter;
parameterT100MS=25'd920_4818;

always@(posedgeCLK)

if(counter==T100MS)

counter<=25'd0;

else

counter<=counter+1'b1;
////////////////////////////////////////////
always@(posedgeCLKornegedgeRESET)
if(!RESET)
LED_Out<=4'b0001;//初值,最低位led[0]灯亮
elseif(counter==T100MS)
begin
if(LED_Out==4'b0000)//当溢出最高位时
LED_Out<=4'b0001;//回到复位时的状态
else
LED_Out<=LED_Out<<1;     //循环左移一位 
 end

endmodule // Run_LED

两个工程基本一样,流水的操作是在约束里实现的。

golden工程约束

#CLOCKS
#SYSCLK
set_propertyIOSTANDARDLVCMOS18[get_portsCLK]
set_propertyPACKAGE_PIND27[get_portsCLK]

#GPIOLEDs
#set_propertyPACKAGE_PINAB8[get_portsLED_REVXX[7]]
#set_propertyIOSTANDARDLVCMOS15[get_portsLED_REVXX[7]]
#set_propertyPACKAGE_PINAA8[get_portsLED_REVXX[6]]
#set_propertyIOSTANDARDLVCMOS15[get_portsLED_REVXX[6]]
#set_propertyPACKAGE_PINAC9[get_portsLED_REVXX[5]]
#set_propertyIOSTANDARDLVCMOS15[get_portsLED_REVXX[5]]
#set_propertyPACKAGE_PINAB9[get_portsLED_REVXX[4]]
#set_propertyIOSTANDARDLVCMOS15[get_portsLED_REVXX[4]]

#set_propertyPACKAGE_PINAE26[get_portsLED_Out[3]]
#set_propertyIOSTANDARDLVCMOS33[get_portsLED_Out[3]]
set_propertyPACKAGE_PINT21[get_portsLED_Out[2]]
set_propertyIOSTANDARDLVCMOS33[get_portsLED_Out[2]]
set_propertyPACKAGE_PINT20[get_portsLED_Out[1]]
set_propertyIOSTANDARDLVCMOS33[get_portsLED_Out[1]]
set_propertyPACKAGE_PINR24[get_portsLED_Out[0]]
set_propertyIOSTANDARDLVCMOS33[get_portsLED_Out[0]]

#CFGBVSandSPImodeproperties

set_propertyCFGBVSVCCO[current_design]
set_propertyCONFIG_VOLTAGE2.5[current_design]
set_propertyCONFIG_MODESPIX1[current_design]

#Compressthebitstreamtofiton128MQSPIoftheK7
set_propertyBITSTREAM.GENERAL.COMPRESSTRUE[current_design]

#BITSTREAMPROPERTIESREQUIREDFORGOLDENIMAGE:
set_propertyBITSTREAM.CONFIG.SPI_BUSWIDTH1[current_design]
set_propertyBITSTREAM.CONFIG.CONFIGFALLBACKENABLE[current_design]
set_propertyBITSTREAM.CONFIG.NEXT_CONFIG_ADDR0x0400000[current_design]

#(IftheSPIflashisequaltoorgreaterthan256Mb,uncommenttheconstraintbelow):
#set_propertyBITSTREAM.CONFIG.SPI_32BIT_ADDRYES[current_design]

这里解释一下,前面物理约束不重要,因为“穷”,我的板子只有3颗LED,所以只进行了三个物理约束。

CFGBVS and SPI mode properties及Compress the bitstream to fit on 128M QSPI of the K7、BITSTREAM PROPERTIES REQUIRED FOR GOLDEN IMAGE是重点约束的对象,具体解释看下表一。

set_propertyBITSTREAM.CONFIG.SPI_BUSWIDTH1[current_design]
set_propertyBITSTREAM.CONFIG.CONFIGFALLBACKENABLE[current_design]
set_propertyBITSTREAM.CONFIG.NEXT_CONFIG_ADDR0x0400000[current_design]

这三个约束是和UPDATE工程有关,一个是SPI的BUSWIDTH,一个是否开启CONFIGFALLBACK,最后一个是地址,这是非常重要的。

接下来是update工程的约束文件

#CLOCKS
#SYSCLK
set_propertyIOSTANDARDLVCMOS18[get_portsCLK]
set_propertyPACKAGE_PIND27[get_portsCLK]

#GPIOLEDs
#set_propertyPACKAGE_PINAB8[get_portsLED_REVXX[7]]
#set_propertyIOSTANDARDLVCMOS15[get_portsLED_REVXX[7]]
#set_propertyPACKAGE_PINAA8[get_portsLED_REVXX[6]]
#set_propertyIOSTANDARDLVCMOS15[get_portsLED_REVXX[6]]
#set_propertyPACKAGE_PINAC9[get_portsLED_REVXX[5]]
#set_propertyIOSTANDARDLVCMOS15[get_portsLED_REVXX[5]]
#set_propertyPACKAGE_PINAB9[get_portsLED_REVXX[4]]
#set_propertyIOSTANDARDLVCMOS15[get_portsLED_REVXX[4]]

#set_propertyPACKAGE_PINAE26[get_portsLED_Out[3]]
#set_propertyIOSTANDARDLVCMOS33[get_portsLED_Out[3]]
set_propertyPACKAGE_PINR24[get_portsLED_Out[2]]
set_propertyIOSTANDARDLVCMOS33[get_portsLED_Out[2]]
set_propertyPACKAGE_PINT20[get_portsLED_Out[1]]
set_propertyIOSTANDARDLVCMOS33[get_portsLED_Out[1]]
set_propertyPACKAGE_PINT21[get_portsLED_Out[0]]
set_propertyIOSTANDARDLVCMOS33[get_portsLED_Out[0]]

#CFGBVSandSPImodeproperties

set_propertyCFGBVSVCCO[current_design]
set_propertyCONFIG_VOLTAGE2.5[current_design]
set_propertyCONFIG_MODESPIX1[current_design]

#Compressthebitstream
set_propertyBITSTREAM.GENERAL.COMPRESSTRUE[current_design]

#BITSTREAMPROPERTIESREQUIREDFORGOLDENIMAGE:
set_propertyBITSTREAM.CONFIG.SPI_BUSWIDTH1[current_design]
set_propertyBITSTREAM.CONFIG.CONFIGFALLBACKENABLE[current_design]

#(IftheSPIflashisequaltoorgreaterthan256Mb,uncommenttheconstraintbelow):
#set_propertyBITSTREAM.CONFIG.SPI_32BIT_ADDRYES[current_design]

物理约束同样不重要,重要的还是下面的和multiboot相关的约束,具体解释和上面一样。

生成Bit流并运行

上述两个工程分别生成Bit流并运行,查看两个流水灯是否是两个不同方向的。

合成MCS文件并运行

将两个BIT流文件合成一个MCS文件,命令如下:

write_cfgmem-formatmcs-interfaceSPIX1-size16-loadbit"up0/golden.bitup
0x0400000/update.bit"/filename.mcs

两个bit流文件位置;

filename: mcs文件名称。

将上诉mcs文件下载到FPGA开发板上,可以看见update工程文件运行。

破坏Golden文件

回退到Golden可以通过不同的方式触发。主要有以下几种方式:

  1. ID Code错误
  2. CRC错误
  3. Watchdog超时
  4. BPI地址越界

有关更多信息,请参阅UG470中的重新配置和多引导章节。

本应用说明演示了由CRC错误触发的回退。可以手动损坏更新位流以导致CRC错误。在RESET CRC命令和CRC命令之间有许多可以翻转位的位置。下图显示了一个示例。

  • 1.使用十六进制编辑器(HxD Hex Editor)中打开更新(update)比特流(.bit),在比特流中间翻转一些数据字节,例如从00到11,如图所示。
7b097884-1111-11ec-8fb8-12bb97331649.png

为了保证破坏彻底,可以多更改几处。

  1. 保存损坏的更新位流,并使用此损坏的位流生成新的闪存编程文件(.mcs)。
write_cfgmem-formatmcs-interfaceSPIX1-size16-loadbit"up0/golden.bitup
0x0400000/update.bit"/filename.mcs
  • 3.重新下载文件

观察是Golden还是update文件运行,同理可以将上诉命令修改,将golden和update更换一下mcs文件位置,对比测试,上诉两个情况本人都有亲自测试过,都是golden文件运行,证明multiboot已经生效。

编辑:jq
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • FPGA
    +关注

    关注

    1624

    文章

    21608

    浏览量

    601075
  • led
    led
    +关注

    关注

    240

    文章

    23039

    浏览量

    656628
  • 闪存编程
    +关注

    关注

    0

    文章

    9

    浏览量

    6652

原文标题:Xilinx Multiboot实例演示

文章出处:【微信号:Open_FPGA,微信公众号:OpenFPGA】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    如何申请xilinx IP核的license

    在使用FPGA的时候,有些IP核是需要申请后才能使用的,本文介绍如何申请xilinx IP核的license。
    的头像 发表于 10-25 16:48 129次阅读
    如何申请<b class='flag-5'>xilinx</b> IP核的license

    【AG32开发板体验连载】AG32VF407启动与探究

    AG32VF407启动与探究 0. 申请理由 学术背景:山东大学集成电路学院硕士一年级在读,具有扎实的理论基础。 相关经验:参与过RISC-V V扩展优化软件性能的研究等。 研究目的:为山东大学软件
    发表于 10-05 17:08

    深入探究石英可编程 DXO/VCXO 振荡器 SWPQ201 系列(10MHz 至 1500 MHz)

    深入探究石英可编程 DXO/VCXO 振荡器 SWPQ201 系列(10MHz 至 1500 MHz)
    的头像 发表于 08-10 10:05 386次阅读
    <b class='flag-5'>深入</b><b class='flag-5'>探究</b>石英可编程 DXO/VCXO 振荡器 SWPQ201 系列(10MHz 至 1500 MHz)

    Python在AI中的应用实例

    Python在人工智能(AI)领域的应用极为广泛且深入,从基础的数据处理、模型训练到高级的应用部署,Python都扮演着至关重要的角色。以下将详细探讨Python在AI中的几个关键应用实例,包括机器学习、深度学习、自然语言处理、计算机视觉以及强化学习,每个部分将结合具体案
    的头像 发表于 07-19 17:16 847次阅读

    深入探究 MEMS LVCMOS 振荡器 SiT1602 系列 52 种标准频率

    深入探究 MEMS LVCMOS 振荡器 SiT1602 系列(52 种标准频率)
    的头像 发表于 07-19 16:16 284次阅读

    步进电机的控制原理与应用实例

    步进电机,作为一种特殊的电机类型,在现代工业控制系统中占据着重要的地位。其独特的控制方式和广泛的应用领域,使得步进电机成为自动化控制领域中的关键组件。本文将从步进电机的控制原理出发,深入探讨其工作原理、特点以及在不同领域中的应用实例,以期为读者提供全面、
    的头像 发表于 06-25 14:34 691次阅读

    飞天技术沙龙回顾:业务创新新选择,倚天Arm架构深入探讨

    日前,飞天技术沙龙《业务创新新选择,倚天Arm架构深入探索》在上海成功举行。来自阿里云、平头哥及Arm的专家为现场观众深入解读了Arm架构的核心优势,并重点分享了基于倚天710的计算实例g8y在大数
    的头像 发表于 05-21 16:48 508次阅读
    飞天技术沙龙回顾:业务创新新选择,倚天Arm架构<b class='flag-5'>深入</b>探讨

    高效节能的DC电源模块技术探究

    BOSHIDA  高效节能的DC电源模块技术探究 DC/DC 模块电源是一种开关型的模块式稳压电源,以其体积小巧、性能卓异、使用方便的显着特点,在通信、网络、工控、铁路、军事等领域日益得到广泛
    的头像 发表于 03-29 13:32 441次阅读
    高效节能的DC电源模块技术<b class='flag-5'>探究</b>

    EMC技术:未来趋势下的应用与发展探究

    EMC技术:未来趋势下的应用与发展探究?|深圳比创达电子EMC
    的头像 发表于 03-20 10:24 473次阅读
    EMC技术:未来趋势下的应用与发展<b class='flag-5'>探究</b>?

    Xilinx fpga芯片系列有哪些

    Xilinx FPGA芯片拥有多个系列和型号,以满足不同应用领域的需求。以下是一些主要的Xilinx FPGA芯片系列及其特点。
    的头像 发表于 03-14 16:24 2900次阅读

    AMD Xilinx 7系列FPGA的Multiboot多bit配置

    Multiboot是一种在AMD Xilinx 7系列FPGA上实现双镜像(或多镜像)切换的方案。它允许在FPGA中加载两个不同的配置镜像,并在需要时切换。
    的头像 发表于 02-25 10:54 1156次阅读
    AMD <b class='flag-5'>Xilinx</b> 7系列FPGA的<b class='flag-5'>Multiboot</b>多bit配置

    简述Xilinx 7系列FPGA芯片相关知识

    Xilinx 7系列 芯片 应用非常广泛,具有成本低、性能强悍、成熟稳定的特点,目前Xilinx( AMD )已延长该系列芯片的生命周期至少到2035年。 本文主要介绍Xilinx 7系列 FPGA
    的头像 发表于 11-28 10:20 1042次阅读
    简述<b class='flag-5'>Xilinx</b> 7系列FPGA芯片相关知识

    Xilinx FPGA IP之Block Memory Generator功能概述

    Xilinx Block Memory Generator(BMG)是一个先进的内存构造器,它使用Xilinx fpga中的嵌入式块RAM资源生成面积和 性能优化的内存。
    的头像 发表于 11-14 17:49 2396次阅读
    <b class='flag-5'>Xilinx</b> FPGA IP之Block Memory Generator功能概述

    辐射骚扰整改思路及方法:方案合并与原理探究

    辐射骚扰整改思路及方法:方案合并与原理探究 ?|深圳比创达电子EMC
    的头像 发表于 11-09 11:22 582次阅读
    辐射骚扰整改思路及方法:方案合并与原理<b class='flag-5'>探究</b> ?

    罗彻斯特电子携手AMD/Xilinx可持续供应Xilinx传统FPGA产品

    罗彻斯特电子携手AMD/Xilinx,为Xilinx传统FPGA和相关配置PROM产品提供供货支持。
    的头像 发表于 11-07 09:04 487次阅读