0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

无线电将如何影响毫米波阵列中的DPD

analog_devices 来源:亚德诺半导体 作者:亚德诺半导体 2021-09-29 15:50 次阅读

5G新无线电技术标准中,除了sub-6 GHz频率外,还利用毫米波(mmWave)频率来提高吞吐量。毫米波频率的使用为大幅提高数据吞吐量带来了独特的机会,同时也带来了新的实施挑战。本文探讨sub-6 GHz和毫米波基站无线电之间的架构差异,着重讲述在这些系统上实施DPD面临的挑战和带来的好处。

数字预失真(DPD)是一种成熟技术,通常用于sub-6 GHz无线通信系统,以提高功率效率,但大多数毫米波无线电并不使用DPD。采用ADI波束成型器和收发器构建的包含256个元件的毫米波阵列原型,我们能够证明采用DPD能够将有效各向同性辐射功率(EIRP)提高达3 dB。与不采用DPD,但具有相同目标EIRP的阵列相比,这种阵列的元件数量可以减少30%。

本文旨在比较传统的sub-6 GHz宏蜂窝设计和毫米波基站无线电和天线设计。它进一步介绍了这些设计差异相对于sub-6 GHz无线电将如何影响毫米波阵列中的DPD实施。

除了降低延迟和提高可靠性,对更高数据吞吐量的需求呈指数级增长一直是推动3GPP 5G NR标准发展的强大推动因素之一。虽然4G LTE系统部署在sub-3 GHz频段中,但近年来,将新频谱分配部署在3 GHz至5 GHz范围使得我们能够在5G NR中实现更宽的通道带宽(BW)。与4G LTE相比,sub-6 GHz频段的最大通道带宽已从20 MHz增加到100 MHz。除了更宽的通道带宽外,多根发射和接收天线以及最终的大规模MIMO技术进一步提高了频谱效率。虽然所有这些改进都有助于提供更高的数据吞吐量,但基波限制(分配的sub-6 GHz频谱相对较少)继续将个人用户的峰值吞吐量限制在1 Gbps以下。

在5G NR中,3GPP标准历史上首次为蜂窝移动应用分配了24.25 GHz至52.6 GHz之间的毫米波频率。这个新频率范围被称为FR2,sub-6 GHz频率则被称为FR1。相对于FR1,FR2的可用频谱范围更大。FR2中单个通道的频率可能高达400 MHz,可实现前所未有的吞吐量。但是,使用毫米波频率给基站(BS)和用户设备(UE)带来了新的实施挑战。在这些挑战中,最重要的要属更高的路径损耗和更低的PA输出功率,它们使得基站和UE之间的链路预算非常具有挑战性。

BS与UE之间的路径损耗被定义为 Pl[dB] = 10log10 (Pt/Pr),其中 Pt 和 Pr分别为发射功率和接收功率。在自由空间中,接收功率是距离和波长的函数,也称为弗里斯传输公式,其中 Pr(d,λ) = Pt Gt Gr (λ/4πd)²,Gt 和 Gr分别为发射天线增益和接收天线增益。λ表示波长,d表示发射器和接收器之间的距离。在典型的无线通信环境中,由于附近物体的反射和施工材料造成的损耗,针对路径损耗进行建模和估算将会更加复杂。但是,为了理解毫米波与sub-6 Ghz频段相比具有更高的路径损耗,我们来假设在自由空间中传播、提供相似的天线增益,以及BS和UE之间的距离相等。使用这种方法,可以得出28 GHz时的路径损耗比900 MHz时高出10xlog(28000/900)² = 29.8 dB!

在sub-6 GHz频率下,BS功率放大器输出几十瓦的RF功率,且效率超过40%,这并不罕见。这是通过采用高效率PA架构(例如Doherty)和使用先进的数字预失真技术实现的。相比之下,高线性度AB类毫米波PA通常输出不到1 W的RF功率,且效率低于10%。在毫米波频率下,这些工作条件加剧了BS和UE之间的链路预算挑战。要解决这两大挑战——更高的路径损耗、单个PA功率更低,关键在于将功率更准确地传输到具体的空间位置。使用有源相控阵天线可以实现这一目标,该天线具有波束成型和波束转向能力。

毫米波5G中的天线阵列

天线阵列并不是一个新概念。在GSM部署早期,无源阵列就已经用于蜂窝基站天线,雷达系统使用天线阵列的时间则有数十年。如前文所述,在毫米波频率下,要解决更大的路径损耗和单个PA功率更低的问题,需要使用有源相控阵天线。这是通过在阵列中包含许多天线元件,而每个元件由低功率放大器驱动来实现的。使用更多元件会增加阵列的总辐射功率,同时提高阵列增益并产生较窄的波束。对于相控阵天线理论,本文不予讨论。有关该主题的更多信息,请参阅《模拟对话》系列“相控阵天线方向图”(分三部分)。

有源相控阵天线的高成本限制了其应用范围,目前主要用于航空航天和防务领域。半导体技术的最新发展,加上高水平的集成,使有源相控阵天线能够在5G应用中实现商用。ADI提供有源波束成型器件,它们集成了16个完整的发射和接收通道、相关的PA、低噪声放大器(LNA)、每个路径相位和增益控制,以及TDD开关功能。所有这些全部都集成在一块硅芯片中!这些器件的第一代是使用SiGe BiCMOS技术(ADMV4821)实现的。为了进一步提高功效和成本,第二代器件采用了SOI CMOS工艺(ADMV4828)。这些高度集成、高功效的波束成型器,以及毫米波上/下变频器 (ADMV1017/ADMV1018) 和频率合成器 (ADF4371/ADF4372),为毫米波5G基站构建了完整的RF前端解决方案。

在毫米波频率下,天线元件所占的面积很小。例如,一个简单的28 GHz微带贴片天线通常小于10 mm2。因此,可以在一个相对较小的区域内放置许多天线来提高增益。我们假设一个包含256个元件的天线阵列,双极化辐射元件分8行、16列排列,如图1所示。红线和蓝线分别表示+45°和-45°极化元件。

假设天线元件之间的间距为λ/2,那么该天线阵列的总面积为8(λ/2) × 16(λ/2) = 32λ2。将900 MHz和28 GHz天线进行比较,900 MHz天线阵列的总面积为3.55 m2,28 GHz天线阵列的总面积仅为3.67 × 10-3 m2,几乎小了1000倍!虽然900 MHz下的256元件天线阵列的尺寸令人望而却步,但28 GHz下的类似阵列可以在不到40平方厘米的印刷电路板(PCB)上实现。

28 GHz的256元件双极化毫米波天线阵列是基于多层PCB构建,采用ADI的波束成型器和毫米波上/下变频器。为了降低成本,避免天线和无线电之间形成成本高昂/有损耗的互连,将有源组件部署在PCB的一边,天线元件则部署在PCB的另一边。该板被称为AiB256(AiB代表板上的天线),其图如图2所示。

AiB256上有16个ADMV4828 SOI波束成型芯片,每个芯片提供16个发射和16个接收通道,连接到每个极化区域的128根天线元件,覆盖26.5 GHz至29.5 GHz频率范围。同一极化区域内的64根天线元件分别连接至一个单独的ADMV1018毫米波上/下变频器。因此,总共可以形成四个独立的波束。AiB256的一半阵列的简化框图如图3所示。

为了获得更高的EIRP,可以在中频将两组相同极化的天线(包含64根天线)组合起来,产生总共两个波束,每个波束由128根天线元件构成。该板被广泛用于支持天线校准和内部DPD算法的开发。

Sub-6 GHz和毫米波的基站设计

根据给定频率和期望的覆盖区域设计基站时,通常以波束方向图和有效各向同性辐射功率(EIRP)作为先决条件。典型的900 MHz宏蜂窝基站由一个4Tx/4Rx无线电单元(RU)构成,并连接到外部天线,如图4所示。

天线内部有两列交叉极化(±45°红/蓝)偶极子。4个RF端口中,每个端口为一列极化提供馈电。在这个示例中,信号在6个相同极化的偶极子之间以相同相位和幅度分割。在垂直方向(列)排列更多的元件,使得波束聚集在垂直面(参见图4)。这样设计是可行的,因为大部分UE都要低于天线的高度。通常会让波束以某种幅度向下倾斜,以进一步限制单元覆盖范围,避免与其他单元产生干扰。假设天线元件之间的间距为λ/2,该天线的半功率波束宽度(发射功率相对于波束峰值下降3 dB时的角度)在水平面上通常约为90°,在垂直面上一般小于20°。这种宽波束一般覆盖120°扇区,无需转向即可跟踪UE移动。天线的高度为6 × (λ/2) = 2米,宽度为2 × (λ/2) = 0.33米。假设每个偶极子单元的增益为5 dBi,那么每个极化区域的天线增益约为10 × log(12) + 5 dBi = 15.8 dBi。如果每个PA输出40 W (46 dBm)RF功率,每个极化的EIRP为46 dBm + 3 dB(2列)+ 15.8 dBi = 64.8 dBm。在900 MHz下,这种水平的EIRP应该能很好地覆盖几千米范围。

现在,我们来看看28 GHz AiB256,它的每个极化区域内包含128根天线元件,排列成8行、16列,如图1所示。假设元件之间的距离为λ/2,每个元件的增益为5 dBi,那么天线的总增益约为10 ×log(128) + 5 dBi = 26 dBi。与900 MHz示例相比,天线增益高出10.2 dB。

但是,其波束宽度变窄了。3 dB波束宽度在垂直面仅为12°,在水平面仅为6°。如此狭窄的波束根本无法一次覆盖典型的120°扇区。解决方案是:首先在单元覆盖区域内找到活动UE,将波束指向他们,然后跟踪他们在单元内的移动。5G标准指定了波束采集和跟踪程序,对此,本文不予讨论。为了计算这个无线电的EIRP,我们假设每个发射路径输出13 dBm RF功率。每个极化区域的总功率为13 dBm + 10 × log(128) = 34 dBm。加上26 dBi天线增益,每个极化的总EIRP为34 dBm + 26 dBi = 60 dBm。在典型的室外部署场景中,这个水平的EIRP在28 GHz下可以覆盖几百米范围。

DPD在Sub-6 GHz系统中的价值

5G和4G无线标准都是基于OFDM信号,它们本身具有高峰均功率比(PAPR)。为了以高保真度放大和发射这些信号,并避免污染邻近的通道,必须注意不要压缩或剪辑信号峰值。这需要以低于峰值功率6 dB至9 dB的平均功率运行该PA。在这种深度后退的状态下运行PA会导致效率极低,通常低于10%。

高效PA架构(例如Doherty)可以在低于其峰值功率6到9 dB的功率下保持高效率,但与典型的AB PA相比,它们的线性度大幅降低。如果在部署时不使用任何线性化技术,它们将无法满足应用所需的误差矢量幅度(EVM)和邻道功率比(ACPR)。DPD是最流行的线性化技术之一,广泛用于sub-6 GHz系统。

Sub-6 GHz系统要求64-QAM和256-QAM调制的EVM分别低于8%和3.5%,以符合 3GPP标准38.104。要满足这些EVM要求,信号的PAPR应保持在6 dB到9 dB之间。为了满足3GPP标准38.104,ACPR通常应小于–45 dBc。在前面的900 Mhz 4Tx/4Rx无线电示例中,每个发射器应输出40 W rms功率,如果要在线性区域中运行功率放大器,以满足EVM和ACPR要求,它们的效率通常低于10%。这意味着为了输出40 W RF功率,4个PA中的每个PA都需要消耗超过400 W直流功率。所以,单单这4个PA就会消耗超过1600 W功率!

这对无线电的尺寸、冷却、可靠性和运行成本(OPEX)有着巨大的影响。相比之下,如果使用Doherty PA,并且结合削峰(CFR)和DPD技术,那么PA效率会高于40%。这意味着每个PA消耗不超过100 W直流功率,即可输出40 W RF功率。无线电中的4个PA消耗的直流功率不到400 W。无线电的其余部分通常只会消耗不到50 W直流功率。因此,PA消耗的功率在无线电消耗的总直流功率中的占比超过85%,即使在结合使用Doherty放大器、DPD和CFR时也是如此。

毫米波阵列中DPD的实施及其价值

在AiB256中,有256个发射和接收链,能够生成2个或4个波束,每个波束中部署有128个或64个PA。与sub-6 GHz系统一样,64-QAM和256-QAM调制的毫米波频段EVM要求分别为8%和3.5%。但是,毫米波对ACPR的要求远没有sub-6 GHz频段严格;按照3GPP标准38.104,对于28 GHz频段为28 dBc,对于39 GHz频段为26 dBc。

在ADMV4828波束成型器中,每一类AB PA可提供21 dBm峰值功率。ADMV4828上的PA以大约12 dBm rms输出功率运行,可为峰值功率留出9 dB裕量,从而可满足EVM和ACPR要求。在12 dBm (16 mW)输出功率下,每个发射链消耗约300 mW功率,所以效率为5%。发射链中的一些功率是被用于波束成型的可变移相器消耗的。每条接收路径,包含可变移相器在内,消耗大约125 mW直流功率。

基于上述功率消耗,可以明显看出,与sub-6 GHz无线电相比,在毫米波无线电中,PA消耗的功率在总直流功耗中的占比要小得多。这就产生了一个问题:毫米波无线电是否仍能从使用DPD中获益?

为了回答这个问题,我们需要构建一个适用于毫米波的DPD架构。要将DPD实现方案从sub-6 GHz简单地扩展到毫米波,需要围绕每个PA建立一个DPD环路。在AiB256示例中,这意味着需要256个DPD环路!显然,实施256个DPD环路成本高昂且非常耗电。由于每个PA输出少量功率(一般为12 dBm),因此使用DPD的系统总效率很可能低于不使用DPD的系统。

幸运的是,有一个很好的办法可以解决这个问题。AiB256最多可以输出4个波束,每个波束包含64个PA(参见图3)。这意味着每个PA可以获得与其他63个PA相同的信号,除了用于波束转向的相对相移。如果单个DPD环路环绕由64个PA构成的集群,那么整个AiB256阵列只需要总共4个DPD环路。从本质上讲,DPD环路环绕每个波束,而不是环绕PA。我们将其称为阵列DPD,以便与sub-6 GHz DPD区别开来,后者的每个PA都有一个专用DPD环路。

观察接收器必须“观察”波束的视轴,所有PA的信号在此处同相叠加,所以它可以校正由64个PA的累加远场聚集所造成的失真。我们的早期评估使用远场喇叭天线作为DPD观察接收器(如图5所示),且证明可以通过在波束周围部署单个DPD环路来改善EVM和ACPR。ADI未来的产品可能包括集成观察路径,以简化DPD的实施。

DPD设置使用ADRV9029集成收发器,内置CFR和DPD功能,适用于高达200 MHz带宽的信号。ADI未来的收发器采用DPD时,将支持至少400 MHz带宽。

分析发现,在26.5 GHz至29.5 GHz的频率范围内,毫米波阵列DPD可以将波束EIRP提高3 dB左右(在1.5 dB至3.2 dB之间)。在特定频率下优化波束成型器的输出匹配和偏置设置,可以在保持EVM和ACPR规格的同时,获得高达13 dBm rms的输出功率。但是,无法在广泛的频率范围和多个单元中保持这种性能水平。或者,如果满足适当条件(PA的饱和功率电平保持在21 dBm以上),那么使用DPD可以在相关频段中稳定实现高于14 dBm的输出功率。

当指定毫米波阵列时,每个波束的EIRP就是一项核心要求。如果每个元件的功率相对较小,则需要使用多个元件来实现目标EIRP,这反过来又会使成本、功率和阵列大小增加。阵列中部署的元件越多,产生的波束就越窄。更窄的波束并非始终符合需求;它们会增大波束指向和移动用户跟踪的难度。图6中的曲线图说明了所需的元件数量和阵列直流功耗如何随着DPD从0 dB提高到3 dB而变化,同时保持目标EIRP为60 dBm不变。

如果通过应用DPD实现了3 dB EIRP改善,那么所需元件的数量会减少近30%,功耗则降低约20%。与我们的sub-6 GHz示例中采用DPD能将PA的功耗降低4倍相比,在毫米波阵列中,节能功效并不如此明显。但是,在毫米波阵列中,我们可以获得额外的优势:其元件数量减少30%,这会大大降低阵列硬件的成本和体积。未来,我们可以在毫米波波束成型中使用更高效的PA架构,利用DPD来进一步改善功效。

结论

相对于sub-6 Ghz频率,在5G毫米波阵列中实施DPD会带来新的挑战。在波束周围部署DPD环路,而不是在构成波束的单个PA周围部署,可实现阵列DPD还能带来优势。我们的分析表明,这种部署能帮助实现更高的功率输出、节省系统功率,且能减少硬件数量。但是,我们要提醒大家注意:无论是在应用中,还是在评估时,我们都需要从不同于传统sub-6 GHz的角度来看待毫米波DPD。随着毫米波PA架构日益成熟,这种定位可能会发生变化,但目前我们需要重新定义DPD应用,以及它所带来的优势。

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • DPD
    DPD
    +关注

    关注

    3

    文章

    40

    浏览量

    15304
  • 毫米波
    +关注

    关注

    21

    文章

    1927

    浏览量

    64965
  • 5G
    5G
    +关注

    关注

    1356

    文章

    48503

    浏览量

    565642

原文标题:为何毫米波需要采用不同的DPD方法?如何量化其值?

文章出处:【微信号:analog_devices,微信公众号:analog_devices】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    毫米波雷达信号的传输特性

    1. 引言 毫米波雷达作为一种高精度的探测技术,其信号的传输特性对于系统的性能至关重要。本文将探讨毫米波雷达信号的传输特性,包括其传播损耗、多径效应、雨衰等,并分析这些特性对雷达系统的影响。 2.
    的头像 发表于 12-04 09:12 533次阅读

    毫米波雷达的基频和调制技术 毫米波雷达在机器人导航的应用

    毫米波雷达信号处理的重要一环。通过调制技术,可以将一个低频信号(调制信号)与高频信号(载波信号)进行相互作用,将调制信号的信息转移到载波信号,并形成复合信号,从而在频域上改变其频谱特征。毫米波雷达常用的调制方式包括幅度
    的头像 发表于 12-03 17:50 594次阅读

    毫米波雷达与激光雷达比较 毫米波雷达在自动驾驶的作用

    毫米波雷达与激光雷达的比较 毫米波雷达与激光雷达是自动驾驶技术中常用的两种传感器,它们在多个方面存在显著差异: 毫米波雷达 激光雷达 工作原理 通过发射无线电波(
    的头像 发表于 12-03 17:27 634次阅读

    毫米波雷达工作原理 毫米波雷达应用领域

    毫米波雷达工作原理 1. 毫米波雷达的基本结构 毫米波雷达系统通常由以下几个主要部分组成: 发射器 :产生毫米波信号。 天线 :发射和接收毫米波
    的头像 发表于 12-03 17:21 723次阅读

    物联网的高分辨率精确距离测量方案_毫米波雷达

    物联网系统为什么要使用毫米波雷达 物联网系统中使用毫米波雷达的原因主要基于其独特的优势和应用价值,这些优势使得毫米波雷达在物联网的多个领域中都发挥着重要作用。以下是详细的分析:
    的头像 发表于 09-24 14:45 1228次阅读
    物联网<b class='flag-5'>中</b>的高分辨率精确距离测量方案_<b class='flag-5'>毫米波</b>雷达

    TI 毫米波雷达器件的自校准功能

    电子发烧友网站提供《TI 毫米波雷达器件的自校准功能.pdf》资料免费下载
    发表于 09-09 09:40 0次下载
    TI <b class='flag-5'>毫米波</b>雷达器件<b class='flag-5'>中</b>的自校准功能

    什么是毫米波雷达?毫米波雷达模组选型

    各种环境条件下都能保持稳定运行。毫米波雷达通过发射脉冲信号,然后利用天线阵列捕获反射回来的信号,以此来识别目标。通过进一步的信号处理,可以估算出目标的距离、到达角度
    的头像 发表于 09-06 17:38 1475次阅读
    什么是<b class='flag-5'>毫米波</b>雷达?<b class='flag-5'>毫米波</b>雷达模组选型

    毫米波雷达是声波还是电磁

    引言 毫米波雷达是一种利用毫米波段电磁进行探测和测量的技术。它具有高分辨率、高灵敏度、抗干扰能力强等优点,广泛应用于军事、航空航天、交通、气象等领域。 毫米波雷达的基本原理 2.1
    的头像 发表于 08-16 10:11 779次阅读

    简述毫米波雷达的结构、原理和特点

    毫米波雷达是一种利用毫米波段电磁进行探测和测量的雷达系统,具有高分辨率、高灵敏度、高抗干扰能力等特点,在军事、航空、航天、交通、气象等领域得到广泛应用。 一、毫米波雷达的结构
    的头像 发表于 08-16 10:05 2290次阅读

    毫米波雷达具有哪些特点和优势

    毫米波雷达是一种利用毫米波段电磁进行探测和测量的雷达系统。它具有许多特点和优势,使其在许多领域得到广泛应用。以下是毫米波雷达的一些主要特点和优势: 高分辨率:
    的头像 发表于 08-16 10:04 1758次阅读

    毫米波应用5G手机低介电绝缘透散热膜

    毫米波(millimeterwave):波长为1~10毫米的电磁毫米波,它位于微波与远红外相交叠的波长范围,因而兼有两种波谱的特点。
    的头像 发表于 07-09 08:10 436次阅读
    <b class='flag-5'>毫米波</b>应用5G手机低介电绝缘透<b class='flag-5'>波</b>散热膜

    基于毫米波雷达的手势识别算法

    新的无线电接入标准,而且是一种潜在的传感工具。毫米波手势识别的研究已经取得了许多成果。在实际应用层面,它可以用于汽车行业,以提供 为驾驶员提供安全直观的控制界面。然而,并不是所有坐在车内的乘客的手势
    发表于 06-05 19:09

    毫米波雷达在日常生活的应用

    探测技术,近年来也逐渐渗透到我们的日常生活。这种雷达技术以其独特的优势,如高精度、高分辨率、抗干扰能力强等,在民用领域发挥着越来越重要的作用。毫米波雷达应用智能家
    的头像 发表于 04-17 08:11 1063次阅读
    <b class='flag-5'>毫米波</b>雷达在日常生活<b class='flag-5'>中</b>的应用

    一文带你了解毫米波雷达

    空间的位置。毫米波雷达是指一种工作在毫米波频段(millimeter wave)的雷达传感器。 国际电信联盟(ITU)发布的《无线电规则》(2020 年)和我国《无线电频率划分规定》
    的头像 发表于 03-06 16:50 1.1w次阅读
    一文带你了解<b class='flag-5'>毫米波</b>雷达

    毫米波雷达在智能网联汽车的应用

    毫米波雷达(MMW)是一种新型的雷达技术,逐渐在智能网联汽车得到广泛应用。它利用毫米波频段的电磁进行探测和测距,具有高分辨率、高精度、高可靠性等优点。本文将详细介绍
    的头像 发表于 01-31 10:41 3209次阅读