0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

大规模ASIC或FPGA设计中异步FIFO设计阐述

FPGA之家 来源:EETOP 作者:ThinkSpark 2021-09-30 09:57 次阅读

一、概述

在大规模ASICFPGA设计中,多时钟系统往往是不可避免的,这样就产生了不同时钟域数据传输的问题,其中一个比较好的解决方案就是使用异步FIFO来作不同时钟域数据传输的缓冲区,这样既可以使相异时钟域数据传输的时序要求变得宽松,也提高了它们之间的传输效率。此文内容就是阐述异步FIFO的设计。

二、设计原理

2.1结构框图

73ca2282-218b-11ec-82a8-dac502259ad0.jpg


Fig. 2.1.1

如上图所示的同步模块synchronize to write clk,其作用是把读时钟域的读指针rd_ptr采集到写时钟(wr_clk)域,然后和写指针wr_ptr进行比较从而产生或撤消写满标志位wr_full;类似地,同步模块synchronize to read clk的作用是把写时钟域的写指针wr_ptr采集到读时钟域,然后和读指针rd_ptr进行比较从而产生或撤消读空标志位rd_empty。

另外还有写指针wr_ptr和写满标志位wr_full产生模块,读指针rd_ptr和读空标志位rd_empty产生模块,以及双端口存储RAM模块。

2.2二进制计数器存在的问题

异步FIFO读写指针需要在数学上的操作和比较才能产生准确的空满标志位,但由于读写指针属于不同的时钟域及读写时钟相位关系的不确定性,同步模块采集另一时钟域的指针时,此指针有可能正处在跳变的过程中,如图Fig.2.2.1所示,那么采集到的值很有可能是不期望的值,当然,不期望的错误结果也会随之发生。

上图中,rd_ptr2sync 3和4以及4和5之间的中间态是由于到各寄存器的时钟rd_clk存在偏差而引起的。二进制的递增操作,在大多数情况下都会有两位或者两以上的bit位在同一个递增操作内发生变化,但由于实际电路中会存在时钟偏差和不同的路径延时,二进制计数器在自增时会不可避免地产生错误的中间结果,如图Fig.2.2.2。

上图是Fig.2.2.1的电路原型以及局部波形的放大。由于rd_clk上升沿到达三寄存器的时间各不相同,这就导致了rd_ptr2sync的值从3’b011跳变3’b100的过程中经历了3’b111和3’b101,直到最后一个时钟(rd_clk0)沿的到来后rd_ptr2sync才跳变到正确结果3’b100。中间结果的持续的时间虽然相对短暂,但是这些不正确的中间结果完全有可能被其它时钟域的同步模块采集到而产生错误的动作,见上图。

由此可见,要避免中间结果的产生,其中一个可行的方案就是使被同步模块采集的数据递变时,每次只有一个bit位发生改变。格雷码计数器就是一个不错的选择。

2.3格雷码计数器的实现

2.3.1格雷码的表现形式

格雷码一个最大的特点就是在递增或递减的过程中,每次只变化一位,这是它最大的优点。同时它也有自己的局限性,那就是循环计数深度必须是2的n次幂,否则就失去了每次只变化一位的特性。深度为16的二进制及格雷码递变表如下:

Binary Gray

0 0000 0000

1 0001 0001

2 0010 0011

3 0011 0010

4 0100 0110

5 0101 0111

6 0110 0101

7 0111 0100

8 1000 1100

9 1001 1101

10 1010 1111

11 1011 1110

12 1100 1010

13 1101 1011

14 1110 1001

15 1111 1000

0 0000 0000

2.3.2二进制和格雷码的相互转换

1、二进制到格雷码:

745ae790-218b-11ec-82a8-dac502259ad0.png

2.3.3格雷码计数器的实现

如下图fig.2.3.1所示,指向存储器的地址指针由二进制计数器产生,而用于跨时钟域传播的格雷码指针是对二进制指针的实时转换并用寄存器采集获得的。这里要注意的是,计数器的位宽比实际所需的位宽要多出一位,这样做的目的是方便判断FIFO的空或满,这一点下文中将会介绍。

2.4空满标志位的产生

异步FIFO最核心的部分就是精确产生空满标志位,这直接关系到设计的成败。本文采用比较读写指针来判断FIFO的空满,如果FIFO的深度是n-1位线所能访问到的地址空间,那么此设计所要用的指针位宽就比实际多出一位,也就是n位,这样做有助于判断FIFO是空还是满。

2.4.1读空标志位的产生

当读地址rd_ptr赶上写地址wr_ptr,也就是rd_ptr完全等于wr_ptr时,可以断定,FIFO里的数据已被读空,而且只有在两种情况下,FIFO才会为空:第一种是系统复位,读写指针全部清零;另一种情况是在FIFO不为空时,数据读出的速率快于数据写入的速率,读地址赶上写地址时FIFO为空。空标志位的产生需要在读时钟域里完成,这样不至于发生FIFO已经为空了而空标志位还没有产生的情况,但是可能会发生FIFO里已经有数据了而空标志位还没有撤消的情况,不过就算是在最坏情况下,空标志位撤消的滞后也只有三个时钟周期,这个问题不会引起传输错误;还有一种情况就是空标志比较逻辑检测到读地址和写地址相同后紧接着系统产生了写操作,写地址增加,FIFO内有了新数据,由于同步模块的滞后性,用于比较的写地址不能及时更新,这样,一个本不应该有的空标志信号就产生了,不过这种情况也不会导致错误的发生,像这种FIFO非空而产生空标志信号的情况称为“虚空”。

74d0ccf8-218b-11ec-82a8-dac502259ad0.png


Fig. 2.4.1.1空标志产生逻辑

如图Fig. 2.4.1.1空标志产生逻辑,写时钟域的写指针通过两级寄存被同步到读时钟域之后与读指针进行比较,如果完全相等,则会产生空标志信号;同步模块用两级寄存器来实现是为了消除可能的亚稳态,正如前面所述,因为wr_ptr_gray是用格雷码实现的,即使同步模块是在wr_ptr_gray跳变的时刻进行采集,其采集到的所有可能值也只有两个,一个是跳变之前的值,一个是跳变之后的值,它们只相差1,最坏情况也只是产生了“虚空”信号,而这不会引起错误传输。

2.4.2写满标志位的产生

和读空标志位产生机制一样,写满标志位也是通过比较读写地址产生的。读写指针的关系就好比A,B两个田径运动员在一环形跑道上赛跑一样,当B运动员领先A并整整超前一圈时,A,B两人的地点相同,此种情况对应于读写指针指向了同一地址,但写指针超前整整一圈,FIFO被写满。和读空标志产生一样,写满标志也是读写指针相同时产生。但是如果地址的宽度和FIFO实际深度所需的宽度相等,某一时刻读写地址相同了,那FIFO是空还是满就难以判断了。所以读写指针需要增加一位来标记写地址是否超前读地址(在系统正确工作的前提下,读地址不可能超前于写地址),比如FIFO的深度为8,我们需要用宽度为4的指针。


Fig. 2.4.2.1格雷码指针和存储空间的映射关系

如果读指针的最高位为0,而写指针的最高位为1,说明写指针超前于读指针,这时如果读写指针指向同一存储空间,参照Fig. 2.4.2.1 , 则可判断为FIFO被写满。写满标志位产生逻辑只需关心格雷码指针最高位不同(写超前于读)且它们指向同一存储空间的情况,那么怎么通过比较两格雷码指针来判断这种情况的发生呢?首先,最高位相异(因为读指针不可能超前于写指针,所以只可能是写指针超前于读指针);其次,如果把最高位为1的所有格雷码指针的次高位均取反后,除去最高位不看,则指向同一存储空间的两指针相同,从而得出第二个条件是:次高也相异。


Fig. 2.4.2.2写满标志位产生逻辑

三、总结

前文讲述了异步FIFO的应用需要、实现原理,并重点阐述了空满标志信号的产生方法以及可能会发生的“虚空”和“虚满”现象。理解了这些关键信号的产生原理,设计一个异步FIFO也就不难了。

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • FPGA
    +关注

    关注

    1625

    文章

    21664

    浏览量

    601678
  • asic
    +关注

    关注

    34

    文章

    1193

    浏览量

    120303
  • fifo
    +关注

    关注

    3

    文章

    387

    浏览量

    43535

原文标题:异步FIFO设计(非常详细,图文并茂,值得一看!)

文章出处:【微信号:zhuyandz,微信公众号:FPGA之家】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    FPGAASIC在大模型推理加速的应用

    随着现在AI的快速发展,使用FPGAASIC进行推理加速的研究也越来越多,从目前的市场来说,有些公司已经有了专门做推理的ASIC,像Groq的LPU,专门针对大语言模型的推理做了优化,因此相比GPU这种通过计算平台,功耗更低、
    的头像 发表于 10-29 14:12 202次阅读
    <b class='flag-5'>FPGA</b>和<b class='flag-5'>ASIC</b>在大模型推理加速<b class='flag-5'>中</b>的应用

    FPGAASIC的优缺点比较

    FPGA(现场可编程门阵列)与ASIC(专用集成电路)是两种不同的硬件实现方式,各自具有独特的优缺点。以下是对两者优缺点的比较: FPGA的优点 可编程性强 :FPGA具有高度的可编程
    的头像 发表于 10-25 09:24 225次阅读

    FPGA仿真黑科技\"EasyGo Vs Addon \",助力大规模电力电子系统仿真

    可以轻松地将其与各种硬件和协议连接,增强测试系统的灵活性。二、产品亮点▍超强FPGA芯片与接口配置,助力大规模电力电子系统仿真EasyGo Vs Addon支持的PXIe 7891搭载全新
    发表于 10-23 18:18

    FPGA同步复位和异步复位

    FPGA(Field-Programmable Gate Array,现场可编程门阵列)的复位操作是设计过程不可或缺的一环,它负责将电路恢复到初始状态,以确保系统的正确启动和稳定运行。在F
    的头像 发表于 07-17 11:12 1317次阅读

    FPGA异步信号处理方法

    FPGA(现场可编程门阵列)在处理异步信号时,需要特别关注信号的同步化、稳定性以及潜在的亚稳态问题。由于异步信号可能来自不同的时钟域外部设备,其到达时间和频率可能不受
    的头像 发表于 07-17 11:10 1045次阅读

    具有FIFO的双异步通信元件TL16C552A数据表

    电子发烧友网站提供《具有FIFO的双异步通信元件TL16C552A数据表.pdf》资料免费下载
    发表于 06-26 11:28 0次下载
    具有<b class='flag-5'>FIFO</b>的双<b class='flag-5'>异步</b>通信元件TL16C552A数据表

    同步FIFO异步FIFO区别介绍

    ,并且间隔时间长,也就是突发写入。那么通过设置一定深度的FIFO,可以起到数据暂存的功能,且使得后续处理流程平滑。 时钟域的隔离:主要用异步FIFO。对于不同时钟域的数据传输,可以通过FIFO
    的头像 发表于 06-04 14:27 1302次阅读
    同步<b class='flag-5'>FIFO</b>和<b class='flag-5'>异步</b><b class='flag-5'>FIFO</b>区别介绍

    FPGA技术的五大优势

    各行各业纷纷采用FPGA芯片是源于FPGA融合了ASIC和基于处理器的系统的最大优势。 FPGA能够提供硬件定时的速度和稳定性,且无需类似自定制AS
    发表于 04-23 15:50 1059次阅读

    专用集成电路都是大规模的吗为什么呢

    的集成度和性能优势。然而,并非所有专用集成电路都是大规模的,因为集成度的大小取决于设计和制造的要求。 在探讨专用集成电路是否大规模之前,我们首先需要了解什么是大规模集成电路(Very Large Scale Integratio
    的头像 发表于 04-21 09:15 488次阅读

    专用集成电路都是大规模的吗

    Integrated Circuit,简称GPIC)相比,专用集成电路更加定制化和特定化,因此常被视为大规模的集成电路。但是,并不是所有的专用集成电路都是大规模的,这取决于具体的设计需求和应用场景。 在
    的头像 发表于 04-19 14:39 434次阅读

    专用集成电路都是大规模的吗为什么

    Integrated Circuit, GPIC)相比,ASIC针对特定的应用程序进行了优化和定制,以实现更高的性能、更低的功耗和更小的面积。 专用集成电路之所以通常是大规模的,是因为它们需要集成
    的头像 发表于 04-14 10:48 542次阅读

    fpgaasic的区别

    FPGA(现场可编程门阵列)和ASIC(专用集成电路)是两种不同类型的集成电路,它们在设计灵活性、制造成本、应用领域等方面有着显著的区别。
    的头像 发表于 03-26 15:29 1674次阅读

    异步FIFO结构设计

    电子发烧友网站提供《异步FIFO结构设计.pdf》资料免费下载
    发表于 02-06 09:06 0次下载

    FPGA分类

    FPGA :通常具有少于10,000个逻辑单元。这类FPGA适用于简单、低成本的设计。 规模FPGA :通常具有10,000到100,00
    发表于 01-26 10:09

    到底什么是ASICFPGA

    提供的门电路规模足够大,通过编程,就能够实现任意ASIC的逻辑功能。 FPGA开发套件,中间那个是FPGA芯片 我们再看看
    发表于 01-23 19:08