0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

用于检测异常的胸部X光图像的深度学习系统

Tensorflowers 来源:TensorFlow 作者:TensorFlow 2021-09-30 11:16 次阅读

医学成像中应用机器学习 (ML),为改善胸部 X 光 (CXR) 图像解读的可用性、延迟时间、准确率和一致性提供了绝佳的机会。事实上,我们已经开发了大量的算法检测如肺癌、肺结核和气胸等特定疾病。然而,由于这些算法是被训练用于检测特定疾病,其在普遍临床环境下的实用性可能会受到限制,因为这种环境下可能会出现各种各样的异常情况。例如,我们无法通过气胸检测算法发现癌症结节,而肺结核检测算法可能也无法识别肺炎特有的症状。由于初始分诊步骤是确定 CXR 是否包含相关的异常,如果能使用一种通用算法,以识别包含任何异常情况的 X 光图像,即可大大简化工作流。然而,由于在 CXR 上出现的异常情况种类繁多,开发能识别所有异常情况的分类算法可谓充满挑战。

我们发表于《科学报告》的“深度学习用于区分正常和异常胸部放射照片,并泛化到两种未知疾病:结核病与新冠肺炎 (Deep Learning for Distinguishing Normal versus Abnormal Chest Radiographs and Generalization to Two Unseen Diseases Tuberculosis and COVID-19)”一文中提出了一个模型,该模型可以在多个去识别化的数据集和环境中区分正常和异常的 CXR。我们发现,该模型在检测一般的异常情况以及结核病和新冠肺炎等未知病例方面表现良好。我们还针对公开可用的 ChestX-ray14 数据集发布了本研究中用到的测试集的放射科医生标签集[1]。

深度学习用于区分正常和异常胸部放射照片,并泛化到两种未知疾病:结核病与新冠肺炎

https://www.nature.com/articles/s41598-021-93967-2

用于检测异常的胸部 X 光图像的深度学习系统

我们使用基于 EfficientNet-B7 架构的深度学习系统,且在 ImageNet 上进行了预训练。我们使用来自印度阿波罗医院的 20 多万张去识别化 CXR 来训练该模型。通过使用基于正则表达式的自然语言处理方法,我们在相关的放射学报告中为每张 CXR 分配“正常”或“异常”标签。

EfficientNet-B7

https://github.com/tensorflow/tpu/tree/r1.15/models/official/efficientnet

ImageNet

https://arxiv.google.cn/abs/1409.0575

为评估该系统在新问诊者群体中的普及程度,我们在两个由大量异常情况组成的数据集中比较了其性能:阿波罗医院数据集的测试分块 (DS-1),以及公开可用的 ChestX-ray14 (CXR-14)。一群获美国职业认证的放射科医生为此项目对两个测试集的标签进行了注释。该系统在 DS-1 和 CXR-14 上的接收者操作特征曲线下面积 (Receiver operating characteristic) (AUROC) 分别达到了 0.87 和 0.94(数字越高越好)。

尽管对 DS-1 和 CXR-14 的评估中包含多种异常情况,不过出现的用例可能是在全新或未知的环境(未知疾病)中利用这样的异常检测算法。为评估该系统对新问诊者群体和训练集中未知疾病的通用性,我们使用了来自三个国家(地区)的四个去识别化数据集,包括两个公开可用的结核病数据集和两个来自 Northwestern Medicine 的新冠肺炎数据集。该系统在检测结核病时曲线下面积达到了 0.95 至 0.97;在检测新冠肺炎时曲线下面积达到了 0.65 至 0.68。由于对这些疾病呈现阴性的 CXR 仍可能包含其他相关异常情况,我们进一步对该系统检测异常(而不是检测疾病为阳性或阴性)的能力进行评估,发现结核病数据集的曲线下面积为 0.91 至 0.93,新冠肺炎数据集的曲线下面积为 0.86。

检测新冠肺炎的表现大幅下降是因为许多被系统标记为“阳性”的异常病例对于新冠肺炎来说呈现阴性,但仍需要注意,其中可能包含异常 CXR 结果。这进一步突显了异常检测算法的作用,尤其是在特定疾病模型可用的情况下。

此外需要注意的是,泛化到未知疾病(即结核病和新冠肺炎)和泛化到未知 CXR 结果(例如胸腔积液 、实变 /浸润)之间存在差别。在此项研究中,我们证明了该系统在检测未知疾病方面的通用性,但对于未知 CXR 结果则不具有通用性。

临床方面的潜在优势

为了解深度学习模型在改善临床工作流方面的潜在实用性,我们模拟了在病例优先级方面该模型的应用,即“加急”异常病例,并将其放置在正常病例之前。在上述模拟操作中,系统将异常病例的周转时间减少了 28%。通过这种设置,我们可以重新确定优先级,将复杂的异常病例转交给心胸专科放射科医生,从而对可能需要紧急决策的病例进行快速分类,并有机会通过简化审查的方式对阴性 CXR 进行批量审查。

此外,我们发现该系统可以作为预训练模型来优化胸部 X 光片的其他 ML 算法,尤其是在数据有限的情况下。例如,我们在最近的研究中使用了正常/异常分类算法,以根据胸部 X 光片检测肺结核。在专业放射科医生或分子检测技术等资源匮乏的地区,异常情况和结核病的检测算法可以在初期诊断中发挥关键作用。

分享改进后的参考标准标签

要发挥 ML 的潜力,以在世界范围内辅助解读胸部 X 光片,我们还有很多工作要做。具体来说,在去识别化的数据上获得高质量标签可能是在医疗领域开发和评估 ML 算法的一个重要障碍。为了加速努力进程,我们通过发布在本研究中用到的标签,对之前发布的标签进行扩展,并将其用于公开可用的 ChestX-ray14 数据集。我们期待着社区在该领域开展未来的机器学习项目。

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 机器学习
    +关注

    关注

    66

    文章

    8375

    浏览量

    132397
  • 深度学习
    +关注

    关注

    73

    文章

    5492

    浏览量

    120961

原文标题:深度学习助力异常胸部 X 光片检测

文章出处:【微信号:tensorflowers,微信公众号:Tensorflowers】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    GPU深度学习应用案例

    能力,可以显著提高图像识别模型的训练速度和准确性。例如,在人脸识别、自动驾驶等领域,GPU被广泛应用于加速深度学习模型的训练和推理过程。 二、自然语言处理 自然语言处理(NLP)是
    的头像 发表于 10-27 11:13 326次阅读

    YXC高频差分晶振,频点200MHZ,3225封装,应用于医疗X

    X机的工作原理中,X机是一种利用X射线穿透性来检查物体内部结构的设备。例如,晶振可以用于
    的头像 发表于 07-29 15:54 273次阅读
    YXC高频差分晶振,频点200MHZ,3225封装,应<b class='flag-5'>用于</b>医疗<b class='flag-5'>X</b><b class='flag-5'>光</b>机

    利用Matlab函数实现深度学习算法

    在Matlab中实现深度学习算法是一个复杂但强大的过程,可以应用于各种领域,如图像识别、自然语言处理、时间序列预测等。这里,我将概述一个基本的流程,包括环境设置、数据准备、模型设计、训
    的头像 发表于 07-14 14:21 1884次阅读

    深度学习在工业机器视觉检测中的应用

    随着深度学习技术的快速发展,其在工业机器视觉检测中的应用日益广泛,并展现出巨大的潜力。工业机器视觉检测是工业自动化领域的重要组成部分,通过图像
    的头像 发表于 07-08 10:40 967次阅读

    基于AI深度学习的缺陷检测系统

    在工业生产中,缺陷检测是确保产品质量的关键环节。传统的人工检测方法不仅效率低下,且易受人为因素影响,导致误检和漏检问题频发。随着人工智能技术的飞速发展,特别是深度学习技术的崛起,基于A
    的头像 发表于 07-08 10:30 1135次阅读

    深度学习在视觉检测中的应用

    能力,还使得机器能够模仿人类的某些智能行为,如识别文字、图像和声音等。深度学习的引入,极大地推动了人工智能技术的发展,特别是在图像识别、自然语言处理、语音识别等领域取得了显著成果。
    的头像 发表于 07-08 10:27 616次阅读

    基于深度学习的小目标检测

    在计算机视觉领域,目标检测一直是研究的热点和难点之一。特别是在小目标检测方面,由于小目标在图像中所占比例小、特征不明显,使得检测难度显著增加。随着
    的头像 发表于 07-04 17:25 735次阅读

    工业X机无损检测设备的主要用途

    工业X机无损检测设备是一种应用于工业中的核成像技术,它基于辐射在被检测物体中的减弱和吸收特性。利用放射性核素或其他辐射源发射出的、具有一定
    的头像 发表于 04-11 16:07 399次阅读
    工业<b class='flag-5'>X</b><b class='flag-5'>光</b>机无损<b class='flag-5'>检测</b>设备的主要用途

    基于机器视觉和深度学习的焊接质量检测系统

    基于机器视觉和深度学习的焊接质量检测系统是一种创新性的技术解决方案,它结合了先进的计算机视觉和深度学习
    的头像 发表于 01-18 17:50 737次阅读

    X工业CT检测设备的优点

    :蔡司X工业CT检测设备能够提供高精度和分辨率的3D图像,能够更好地识别产品中的缺陷、异物或其他问题,有效确定产品是否符合特定的设计规范。3.检测
    的头像 发表于 01-15 16:44 677次阅读
    <b class='flag-5'>X</b><b class='flag-5'>光</b>工业CT<b class='flag-5'>检测</b>设备的优点

    整合传感器和深度学习的“电子舌”系统

    该味觉系统有效整合了传感器和深度学习技术,能够同时准确地检测咸度、酸味、苦味和甜味,有望应用于食品、酒业、化妆品和制药等多个行业。
    的头像 发表于 01-03 17:19 827次阅读
    整合传感器和<b class='flag-5'>深度</b><b class='flag-5'>学习</b>的“电子舌”<b class='flag-5'>系统</b>

    两种应用于3D对象检测的点云深度学习方法

    随着激光雷达传感器(“检测和测距”的缩写,有时称为“激光扫描”,现在在一些最新的 iPhone 上可用)或 RGB-D 摄像头(一种 RGB-D 摄像头)的兴起,3D 数据变得越来越广泛。D 图像
    的头像 发表于 01-03 10:32 922次阅读
    两种应<b class='flag-5'>用于</b>3D对象<b class='flag-5'>检测</b>的点云<b class='flag-5'>深度</b><b class='flag-5'>学习</b>方法

    什么是X工业CT无损检测设备

    X工业CT无损检测设备是一种应用于工业中的核成像技术,它基于辐射在被检测物体中的减弱和吸收特性。同物质对辐射的吸收本领与物质性质有关,因此
    的头像 发表于 12-12 14:42 1106次阅读
    什么是<b class='flag-5'>X</b><b class='flag-5'>光</b>工业CT无损<b class='flag-5'>检测</b>设备

    基于transformer和自监督学习的路面异常检测方法分享

    铺设异常检测可以帮助减少数据存储、传输、标记和处理的压力。本论文描述了一种基于Transformer和自监督学习的新方法,有助于定位异常区域。
    的头像 发表于 12-06 14:57 1452次阅读
    基于transformer和自监督<b class='flag-5'>学习</b>的路面<b class='flag-5'>异常</b><b class='flag-5'>检测</b>方法分享

    【AIOps】一种全新的日志异常检测评估框架:LightAD,相关成果已被软工顶会ICSE 2024录用

    需要更长的时间来进行日志预处理、模型训练和模型推断,从而阻碍了它们在需要快速部署日志异常检测服务的在线分布式云系统中的采用。 本文对现有的基于经典机器学习
    的头像 发表于 11-29 17:40 588次阅读