从今天起,我们开始分析运放uA741的内部结构,争取把它的工作原理给大家讲清楚,讲透彻。只有知道了运放的内部结构,我们才真正可能看得清楚运放的一些参数,在运放选型的时候,才会更加有的放矢。
虽然较新设计的运算放大器在几乎所有可能的方面(速度、噪音、电压范围等等)都超过了它,但最初的741仍然广受喜爱,并在今天依然大量使用。我们对运放的学习,不能仅仅止步于外围电路的搭建,那样对运放的了解不可能深刻。我想通过这一系列的文章,争取能够把uA741这款运放的工作原理给大家讲解得尽可能透彻,让大家在学习运放的时候,能够更加深入,少走一些弯路。
与设计外围电路不同,电流源在运放内部更加常用。比如恒流源、镜像电流源、Widlar电流源、增强型镜像电流源等等。为什么会出现这样的情况呢?其中最为主要的原因,就是运放需要放大的是差分信号,那么这里就遇到一个问题:如何把电压差转化为一个差值信号。运放内部目前选择的方案,就是把电压差转化为电流差。那么要产生这个电流差信号,就需要恒流源,其实这里类似一个加法。两个电流之和是一个恒流,那么一个电流大了,肯定另一个电流就小了。有了这个电流差之后,运放内部的电路再把这个差值信号转化一个电压差信号,然后通过这个电压差信号驱动中间级的放大电路。
中间级的放大电路现在一般采用达林顿管来实现,这样放大倍数就会很大了,假定每一级的放大倍数是200倍,那么达林顿管总体的放大倍数就会有200*200 = 40000倍。实现了信号放大以后,输出级需要解决的就是功率输出的问题了。毕竟运放是一个模拟器件,它需要一定的带载能力,一般情况下,输出级主要是使用推挽电路来做的。当然因为受制于封装的原因,这个电流值也不能太大,所以这里还有保护电路存在(限流作用)。
整体上运放的工作原理,就如上面所示,741也不例外。
大家最常见到的电流源,估计就是电流镜或者说叫做镜像电流源源了。它常见的拓扑结构如下图所示。这个电路的目的,就是实现Io电路和Iref几乎是相同的。这样的话,如果我们要想获得一个特定的电流Io,那么我们只需要去设定Iref就可以了,也就是说Iref侧进行电流的设定,在Io侧实现电流的输出。而下面这个电路,就像镜子一样,可以实现电流的映射。
这个镜像电流源的工作原理,大体如下。因为T1和T2是在同一个晶圆上刻出来的,所以它们具有较高的对称性。T1和T2的引脚是连接在一起的,所以它们对地的电位是相同的。因为对地的电位是相同的,所以它们的基极电流也是相同的。我们说这两个管子是在同一块晶圆上雕刻出来的,那么它们的放大倍数是也是近似相同的。那么当两个管子都是处于放大状态的时候,他们的Ic电流也就是相同,也就是Ic1 = Io。
那么到了此时,我们只是实现了Ic1和Io的镜像关系。但是我们设计的目的其实是Io=Iref,是吧,那么也就是说这里存在一定的误差。这个误差值是多少呢,是不是Ibf是吧。按照上图画下来,Ibf = 2*Ib,对吧。如果T1、T2这两个运放的放大倍数比较大,我们假定100倍好吧,那么Ibf带来的误差是不是差不多在1/50左右呀。这个误差,是不是可以近似忽略呀,所以我们可以在总体上认为Io就等于Iref。上面提到的就是镜像电流源的工作原理。
我们明白了镜像电流工作原理之后,要想产生我们需要的电流,比如10uA。按照我们上面的思路,那么第一个工作,是不是要指定Iref。但是这里面临一个问题,就是这个10uA的电流,如果使用电阻限流的方式来搞,那么就需要非常大的电阻。我们假定供电电压是20V,电流是10uA,那么差不多需要2MR的电阻,这个电阻值太大了。电阻值太大了,芯片在封装的时候,就会面临体积上的问题:电阻越大,某种程度上意味着体积越大。这对芯片设计是非常不利的,所以我们面临一个问题,就是如何使用更小的电阻去产生一个较小的电流呢?
在运放内部,实现这个功能的,就是Widlar电流源。我们也可以把它理解成在镜像电流源上的改进版。这个电流源的拓扑如下图所示。
我这里先给大家分析一下,这个电路的工作原理。本质上,这里是通过R2上电阻的分压,减少了Vbe2的电压值。T1和T2这里都是处于放大状态,Vbe2的电压值变小了,那么那么流经BE PN节的电流值也就变小了,进而放大之后的电流值Ic也就变小了。那么这样的话,即使Iref这边有很大的电流,Io那边的电流也不会很大,这样就解决了R1电阻太大不好封装的问题。具体的公式推导如上图所示,Is是二极管的反向饱和电流,UT=k*T/q,是一个常数。但是这个电流源也有一定的问题,大家看一下公式中存在UT这个常数,但是UT是容易受到温度影响的,所以Io自然也就容易受到温度影响。如果,我们对电流的值要求很精密,这个电流源可能就满足不了要求了。
解决了Iref电流值设定的问题之后,我们基本上解决了运放中电流源设计的主要障碍。但是我们说运放放大部分和功率部分的最好都踩在地上,我们才好进行电路设计是吧。实际上,大家如果常看运放内部的结构图的话,经常会发现恒流源的符号,但是这个符号经常是挂在源端的。比如像LM324这个片子,它内部的恒流源符号很多。关于图中的恒流源是怎么做的,可能会有一些疑问,毕竟这块的电路图,很少有厂商会画出来。
那么也就是说,我们希望的是不是一个P管做的恒流源,不是N管的对吧。一般P管做的恒流源放在源端,N管做的恒流源放在地端是吧。其实P管的恒流源和N管的恒流源思路是一样的
那么如图所示,Iref是不是就可以映射到Io上去了呀,这样这个电流源是不是就可以为后面的负载所用了,对吧。但是741使用的并不是这样的方案,它使用的是一个电流反馈的思路,本质上应该是一样的。我们下一篇文章,继续分析741运放的电流源的部分。
责任编辑:haq
-
放大器
+关注
关注
143文章
13519浏览量
212821 -
电流
+关注
关注
40文章
6712浏览量
131600
原文标题:【技术分享】讲透有史以来广受欢迎的运算放大器μA741—镜像电流源,Widlar电流源
文章出处:【微信号:gh_9b9470648b3c,微信公众号:电子发烧友论坛】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
评论