0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

AI实时感知如何帮助自动驾驶汽车理解限速情况

NVIDIA英伟达企业解决方案 来源:NVIDIA英伟达企业解决方案 作者:NVIDIA英伟达企业解 2021-10-09 15:11 次阅读

本篇文章将以工程为重点,探讨自动驾驶汽车所面临的各项挑战以及NVIDIA DRIVE自动驾驶汽车软件团队如何应对这些挑战。

限速标志识别看似是一项简单的任务,但在遇到不同车道具有不同限速的情况(例如高速公路出口)或者在一个陌生的国家驾驶时,这项任务可能会变得复杂。

如今,限速标志的细致程度远胜于以前。例如,学校区域的限速标志只在一天中的特定时段有效。

有些限速要求通过电子可变信息标志显示,这种标志能够显示适用于特定车道的限速、在特定条件下的限速或在不同条件下的不同限速。

有些标志(例如德国的“高速公路入口”标志)包含隐含的限速信息,因此驾驶者需要根据当地的基本规则和法规来理解限速,而不仅仅是单纯地阅读明确显示的限速数字。

此外,外观相似或相同的限速标志以及标志和补充文字在语义上可能会有许多变化,这些变化会调整甚至改变语义。

传统速度辅助系统所面临的挑战

面对如此复杂的情况,自动驾驶汽车中的速度辅助系统(SAS,speed assist system)必须能够在各种不同的驾驶环境中准确检测和理解标志。在高级驾驶辅助系统中,SAS的功能对于正确告知乃至纠正人类驾驶员至关重要。

在自动驾驶应用中,SAS功能可以为规划和控制软件提供关键信息输入,保证汽车以合法、安全的速度行驶。

传统的SAS高度依赖于导航地图或高清地图,其包含了附近标志的详细信息及语义。

但由于地图精度限制以及在该地图上进行定位时可能具有的精度限制,传统方法可能会导致在经过标志后才检测到标志的存在,从而使汽车在检测到标志之前可能以违规的速度行驶。

此外,地图可能已经过时或者无法正确地将不同的标志与它们所对应的车道相联系。

SAS上线

与传统方法相比,NVIDIA DRIVE SAS通过各种能够检测和理解隐性、显性与可变信息标志的深度神经网络(DNN)充分发挥AI实时感知的力量。

具体而言,NVIDIA WaitNet深度神经网络负责检测标志,SignNet深度神经网络负责对标志进行分类,PathNet深度神经网络负责提供路径感知信息。

因此,理解限速标志和确定该标志与道路上不同车道的相关性(这一过程被称为标志-路径关联性)所需的所有信号均来自现场感知,无需事先从地图中获取信息。

这种方法的另一个优点是灵活性。例如,如果某个地区或国家的隐性限速标志发生了变化,我们的SAS只需要通过改变底层的标志-路径关联逻辑就可以进行应对。

如果系统依赖于带注释的地图,则需要在地图中的每个地方重新注释新规则才能执行正确的更新。

为了进一步提高稳定性,NVIDIA的实时感知SAS所提供的速度标志信息和标志-路径相关性信息可以与地图信息融合。通过将多样化的信息输入进行融合,可以使SAS覆盖更多的现实世界情景。

欢迎自动驾驶领域的各位有志之士加入NVIDIA Developer Program,点击“阅读原文”或复制链接“https://developer.nvidia.com/login”在浏览器中打开即可注册(请在Industry Segment注册选项中选择Automotive)。

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • NVIDIA
    +关注

    关注

    14

    文章

    4940

    浏览量

    102815
  • AI
    AI
    +关注

    关注

    87

    文章

    30146

    浏览量

    268417
  • 自动驾驶
    +关注

    关注

    783

    文章

    13684

    浏览量

    166147

原文标题:临场应变:AI感知如何帮助自动驾驶汽车更好地检测限速

文章出处:【微信号:NVIDIA-Enterprise,微信公众号:NVIDIA英伟达企业解决方案】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    标贝科技:自动驾驶中的数据标注类别分享

    自动驾驶训练模型的成熟和稳定离不开感知技术的成熟和稳定,训练自动驾驶感知模型需要使用大量准确真实的数据。据英特尔计算,L3+级自动驾驶每辆
    的头像 发表于 11-22 15:07 496次阅读
    标贝科技:<b class='flag-5'>自动驾驶</b>中的数据标注类别分享

    标贝科技:自动驾驶中的数据标注类别分享

    自动驾驶训练模型的成熟和稳定离不开感知技术的成熟和稳定,训练自动驾驶感知模型需要使用大量准确真实的数据。据英特尔计算,L3+级自动驾驶每辆
    的头像 发表于 11-22 14:58 107次阅读
    标贝科技:<b class='flag-5'>自动驾驶</b>中的数据标注类别分享

    MEMS技术在自动驾驶汽车中的应用

    中的核心作用 MEMS传感器以其微小但功能强大的特性,在自动驾驶汽车中发挥着至关重要的作用。它们能够实时监测和控制车辆的各种参数,为自动驾驶系统提供精确的环境
    的头像 发表于 11-20 10:19 182次阅读

    自动驾驶汽车安全吗?

    随着未来汽车变得更加互联,汽车逐渐变得更加依赖技术,并且逐渐变得更加自动化——最终实现自动驾驶,了解自动驾驶
    的头像 发表于 10-29 13:42 438次阅读
    <b class='flag-5'>自动驾驶</b><b class='flag-5'>汽车</b>安全吗?

    聊聊自动驾驶离不开的感知硬件

    感知硬件。自动驾驶感知硬件的主要功能是帮助车辆“看见”和“理解”周围环境,为驾驶决策提供必要的
    的头像 发表于 08-23 10:18 410次阅读

    FPGA在自动驾驶领域有哪些优势?

    实时性要求极高,任何延迟都可能导致安全事故。FPGA的硬件特性使得其能够实现极低的延迟,确保自动驾驶系统能够实时响应环境变化并做出正确的决策。 高能效比: 尽管FPGA的功耗相对于一些专用处理器可能
    发表于 07-29 17:11

    FPGA在自动驾驶领域有哪些应用?

    数据的实时处理和反馈,为自动驾驶汽车的决策提供实时、准确的数据支持。 三、控制系统优化自动驾驶汽车
    发表于 07-29 17:09

    自动驾驶汽车如何识别障碍物

    自动驾驶汽车识别障碍物是一个复杂而关键的过程,它依赖于多种传感器和技术的协同工作。这些传感器主要包括激光雷达(LiDAR)、雷达、摄像头以及超声波雷达等,它们各自具有不同的工作原理和优势,共同为自动驾驶
    的头像 发表于 07-23 16:40 961次阅读

    自动驾驶识别技术有哪些

    自动驾驶的识别技术是自动驾驶系统中的重要组成部分,它使车辆能够感知理解周围环境,从而做出智能决策。自动驾驶识别技术主要包括多种传感器及其融
    的头像 发表于 07-23 16:16 540次阅读

    自动驾驶的传感器技术介绍

    自动驾驶的传感器技术是自动驾驶系统的核心组成部分,它使车辆能够感知理解周围环境,从而做出智能决策。以下是对自动驾驶传感器技术的详细介绍,内
    的头像 发表于 07-23 16:08 2069次阅读

    自动驾驶汽车传感器有哪些

    自动驾驶汽车传感器是实现自动驾驶功能的关键组件,它们通过采集和处理车辆周围环境的信息,为自动驾驶系统提供必要的感知和决策依据。以下是对
    的头像 发表于 07-23 16:00 2036次阅读

    深度学习在自动驾驶中的关键技术

    随着人工智能技术的飞速发展,自动驾驶技术作为其中的重要分支,正逐渐走向成熟。在自动驾驶系统中,深度学习技术发挥着至关重要的作用。它通过模拟人脑的学习过程,实现对车辆周围环境的感知理解
    的头像 发表于 07-01 11:40 676次阅读

    未来已来,多传感器融合感知自动驾驶破局的关键

    模态精准感知信息,使自动驾驶系统可以实时精准地感知道路上的各种状况。 昱感微融合感知产品方案创新性地 将可见光摄像头、红外摄像头以及4D毫
    发表于 04-11 10:26

    自动驾驶感知算法提升处理策略

    现代自动驾驶系统的特点是按顺序排列的模块化任务,传统的方法是基于标准的感知-规划-控制这种序列式架构的主流处理方式。即首先将感知信息处理成人类可以理解的语义信息和道路交通信息,然后基于
    的头像 发表于 12-28 09:56 941次阅读
    <b class='flag-5'>自动驾驶</b><b class='flag-5'>感知</b>算法提升处理策略

    LabVIEW开发自动驾驶的双目测距系统

    LabVIEW开发自动驾驶的双目测距系统 随着车辆驾驶技术的不断发展,自动驾驶技术正日益成为现实。从L2级别的辅助驾驶技术到L3级别的受条件约束的
    发表于 12-19 18:02