0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

浅析机器人认路的技术SLAM

新机器视觉 来源:硬件十万个为什么 作者:硬件十万个为什么 2021-10-13 10:38 次阅读

SLAM (simultaneous localization and mapping),也称为CML (Concurrent Mapping and Localization), 即时定位与地图构建,或并发建图与定位。问题可以描述为:将一个机器人放入未知环境中的未知位置,是否有办法让机器人一边逐步描绘出此环境完全的地图,同时一边决定机器人应该往哪个方向行进。例如扫地机器人就是一个很典型的SLAM问题,所谓完全的地图(a consistent map)是指不受障碍行进到房间可进入的每个角落。SLAM最早由Smith、Self和Cheeseman于1988年提出。由于其重要的理论与应用价值,被很多学者认为是实现真正全自主移动机器人的关键。

当你来到一个陌生的环境时,为了迅速熟悉环境并完成自己的任务(比如找饭馆,找旅馆),你应当做以下事情:

a.用眼睛观察周围地标如建筑、大树、花坛等,并记住他们的特征(特征提取)

b.在自己的脑海中,根据双目获得的信息,把特征地标在三维地图中重建出来(三维重建)

c.当自己在行走时,不断获取新的特征地标,并且校正自己头脑中的地图模型(bundle adjustment or EKF)

d.根据自己前一段时间行走获得的特征地标,确定自己的位置(trajectory)

e.当无意中走了很长一段路的时候,和脑海中的以往地标进行匹配,看一看是否走回了原路(loop-closure detection)。实际这一步可有可无。

以上五步是同时进行的,因此是simultaneous localization and mapping

离不开这两类传感器

目前用在SLAM上的Sensor主要分两大类,激光雷达和摄像头。

这里面列举了一些常见的雷达和各种深度摄像头。激光雷达有单线多线之分,角分辨率及精度也各有千秋。SICK、velodyne、Hokuyo以及国内的北醒光学、Slamtech是比较有名的激光雷达厂商。他们可以作为SLAM的一种输入形式。

这个小视频里展示的就是一种简单的2D SLAM。

这个小视频是宾大的教授kumar做的特别有名的一个demo,是在无人机上利用二维激光雷达做的SLAM。

而VSLAM则主要用摄像头来实现,摄像头品种繁多,主要分为单目、双目、单目结构光、双目结构光、ToF几大类。他们的核心都是获取RGB和depth map(深度信息)。简单的单目和双目(Zed、leapmotion)我这里不多做解释,我主要解释一下结构光和ToF。

最近流行的结构光和TOF

结构光原理的深度摄像机通常具有激光投射器、光学衍射元件(DOE)、红外摄像头三大核心器件。

可以看到primesense的doe是由两部分组成的,一个是扩散片,一个是衍射片。先通过扩散成一个区域的随机散斑,然后复制成九份,投射到了被摄物体上。根据红外摄像头捕捉到的红外散斑,PS1080这个芯片就可以快速解算出各个点的深度信息。

这儿还有两款结构光原理的摄像头。

第一页它是由两幅十分规律的散斑组成,最后同时被红外相机获得,精度相对较高。但据说DOE成本也比较高。

还有一种比较独特的方案(最后一幅图),它采用mems微镜的方式,类似DLP投影仪,将激光器进行调频,通过微镜反射出去,并快速改变微镜姿态,进行行列扫描,实现结构光的投射。(产自ST,ST经常做出一些比较炫的黑科技)。

ToF(time of flight)也是一种很有前景的深度获取方法。

传感器发出经调制的近红外光,遇物体后反射,传感器通过计算光线发射和反射时间差或相位差,来换算被拍摄景物的距离,以产生深度信息。类似于雷达,或者想象一下蝙蝠,softkinetic的DS325采用的就是ToF方案(TI设计的),但是它的接收器微观结构比较特殊,有2个或者更多快门,测ps级别的时间差,但它的单位像素尺寸通常在100um的尺寸,所以目前分辨率不高。

在有了深度图之后呢,SLAM算法就开始工作了,由于Sensor和需求的不同,SLAM的呈现形式略有差异。大致可以分为激光SLAM(也分2D和3D)和视觉SLAM(也分Sparse、semiDense、Dense)两类,但其主要思路大同小异。

SLAM算法实现的4要素

SLAM算法在实现的时候主要要考虑以下4个方面吧:

1. 地图表示问题,比如dense和sparse都是它的不同表达方式,这个需要根据实际场景需求去抉择

2. 信息感知问题,需要考虑如何全面的感知这个环境,RGBD摄像头FOV通常比较小,但激光雷达比较大

3. 数据关联问题,不同的sensor的数据类型、时间戳、坐标系表达方式各有不同,需要统一处理

4. 定位与构图问题,就是指怎么实现位姿估计和建模,这里面涉及到很多数学问题,物理模型建立,状态估计和优化

其他的还有回环检测问题,探索问题(exploration),以及绑架问题(kidnapping)。

这个是一个比较有名的SLAM算法,这个回环检测就很漂亮。但这个调用了cuda,gpu对运算能力要求挺高,效果看起来比较炫。

以VSLAM举个栗子

我大概讲一种比较流行的VSLAM方法框架。

整个SLAM大概可以分为前端和后端,前端相当于VO(视觉里程计),研究帧与帧之间变换关系。首先提取每帧图像特征点,利用相邻帧图像,进行特征点匹配,然后利用RANSAC去除大噪声,然后进行匹配,得到一个pose信息(位置和姿态),同时可以利用IMU(Inertial measurement unit惯性测量单元)提供的姿态信息进行滤波融合后端则主要是对前端出结果进行优化,利用滤波理论(EKF、UKF、PF)、或者优化理论TORO、G2O进行树或者图的优化。最终得到最优的位姿估计。

后端这边难点比较多,涉及到的数学知识也比较多,总的来说大家已经慢慢抛弃传统的滤波理论走向图优化去了。

因为基于滤波的理论,滤波器稳度增长太快,这对于需要频繁求逆的EKF(扩展卡尔曼滤波器),PF压力很大。而基于图的SLAM,通常以keyframe(关键帧)为基础,建立多个节点和节点之间的相对变换关系,比如仿射变换矩阵,并不断地进行关键节点的维护,保证图的容量,在保证精度的同时,降低了计算量。

列举几个目前比较有名的SLAM算法:PTAM,MonoSLAM, ORB-SLAM,RGBD-SLAM,RTAB-SLAM,LSD-SLAM。

所以大家如果想学习SLAM的话,各个高校提高的素材是很多的,比如宾大、MIT、ETH、香港科技大学、帝国理工等等都有比较好的代表作品,还有一个比较有前景的就是三维的机器视觉,普林斯顿大学的肖剑雄教授结合SLAM和Deep Learning做一些三维物体的分类和识别, 实现一个对场景深度理解的机器人感知引擎。

http://robots.princeton.edu/talks/2016_MIT/RobotPerception.pdf

SLAM技术从最早的军事用途(核潜艇海底定位就有了SLAM的雏形)到今天,已经逐步走入人们的视野,扫地机器人的盛行更是让它名声大噪。同时基于三维视觉的VSLAM越来越显主流。在地面/空中机器人、VR/AR/MR、汽车/AGV自动驾驶等领域,都会得到深入的发展,同时也会出现越来越多的细分市场等待挖掘。

SLAM技术的应用领域

1)室内机器人

扫地机要算机器人里最早用到SLAM技术这一批了,国内的科沃斯、塔米扫地机通过用SLAM算法结合激光雷达或者摄像头的方法,让扫地机可以高效绘制室内地图,智能分析和规划扫地环境,从而成功让自己步入了智能导航的阵列。

不过有意思的是,科沃斯引领时尚还没多久,一大帮懂Slam算法的扫地机厂商就开始陆陆续续地推出自己的智能导航,直到昨天雷锋网还看到一款智能扫地机新鲜出炉,而这追逐背后的核心,大家都知道就是SLAM技术的应用。

而另一个跟SLAM息息相关的室内移动机器人,因为目前市场定位和需求并不明确,我们目前只能在商场导购室内机器人和Buddy那样的demo视频里才能看到,国内Watchhhh Slam和Slam Tech两家公司都是做这方面方案提供的,以现实的观点看,现在室内移动机器人市场定位和需求没落地的时候,由方案商公司推动,商用室内移动机器人先行,这反而是一种曲线救国的发展方式。

2)AR

目前基于SLAM技术开发的代表性产品有微软的Hololens,谷歌的Project Tango以及同样有名的Magic Leap,后者4月20号公布它的新一代水母版demo后,国内的AR公司更加看到了这个趋势,比如进化动力近期就公布了他们的SLAM demo, 用一个小摄像头实现VR头显空间定位,而易瞳去年10月雷锋网去试用新品的时候,就发现已经整合SLAM技术了,国内其他公司虽然没有正式公布,但我们可以肯定,他们都在暗暗研发这项技术,只等一个成熟的时机就会展现给大家。

进化动力CTO聂崇岭向雷锋网表示,如果用一个准确的说法

很多VR应用需要用到SLAM技术,定位只是一个feature,路径记录、3D重构、地图构建都可以是SLAM技术的输出。

3)无人机

国外的话,原来做 Google X Project Wing 无人机的创始人 MIT 机器人大牛 Nicholas Roy 的学生 Adam Bry 创办的 Skydio,挖来了 Georgia Tech 的 Slam 大牛教授 Frank Dellaert 做他们的首席科学家。

国内大家非常熟悉的大疆精灵四避障用的双目视觉+超声波,一位大疆工程师徐枭涵在百度百家的撰文里坦率承认“P4里面呈现的主动避障功能就是一种非常非常典型的Slam的弱应用,无人机只需要知道障碍物在哪,就可以进行 Planning,并且绕开障碍物。当然Slam能做的事情远远不止这些,包括灾区救援,包括探洞,包括人机配合甚至集群,所有的关于无人机的梦想都建立在Slam之上,这是无人机能飞(具有定位,姿态确定以后)的时代以后,无人机最核心的技术。”

而近期另一个号称刷爆美国朋友圈的hover camera无人机,因为其创始人的的计算机视觉背景,正式把SLAM技术应用进来了,在介绍他们无人机的主要产品技术时,提到了

●SLAM(即时定位与地图构建):通过感知自身周围环境来构建3D增量式地图,从而实现自主定位和导航。

4)无人驾驶

因为Google无人驾驶车的科普,很多人都知道了基于激光雷达技术的Lidar Slam。Lidar Slam是指利用激光雷达作为外部传感器,获取地图数据,使机器人实现同步定位与地图构建。虽然成本高昂,但目前为止是最稳定、最可靠、高性能的SLAM方式。

另外,2011 年,牛津大学Mobile Robotics Group 首次向公众展示他们的第一辆无人驾驶汽车野猫(Wildcat),这是一辆由 Bowler Wildcat 4X4 改装而成的车。汽车头顶的相机和激光能够搜集信息然后即时分析导航,已经成功通过了测试。2014 年,他们改装的一辆 Nissan 的 Leaf 也成功路测。

Mobile Robotics Group主要研究领域是大规模的导航和对自然场景理解。据称,团队所拥有的技术非常牛逼,其复杂和先进性远远超过一般的同步定位与地图构建(SLAM)算法。

可圈可点的是,对于无人驾驶技术,他们并没有使用 GPS 或者是嵌入式的基础设施(信标之类的),而是使用算法来导航,包括机器学习和概率推理来建立周围的地图等。

编辑:jq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 机器人
    +关注

    关注

    211

    文章

    28466

    浏览量

    207306
  • gps
    gps
    +关注

    关注

    22

    文章

    2896

    浏览量

    166293
  • Ar
    Ar
    +关注

    关注

    24

    文章

    5098

    浏览量

    169652
  • SLAM
    +关注

    关注

    23

    文章

    425

    浏览量

    31855
  • 无人驾驶
    +关注

    关注

    98

    文章

    4067

    浏览量

    120567

原文标题:让机器人认路的技术SLAM

文章出处:【微信号:vision263com,微信公众号:新机器视觉】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    【「具身智能机器人系统」阅读体验】2.具身智能机器人大模型

    近年来,人工智能领域的大模型技术在多个方向上取得了突破性的进展,特别是在机器人控制领域展现出了巨大的潜力。在“具身智能机器人大模型”部分,作者研究并探讨了大模型如何提升机器人的能力,大
    发表于 12-29 23:04

    【「具身智能机器人系统」阅读体验】1.初步理解具身智能

    对人工智能、机器人技术和计算系统交叉领域感兴趣的读者来说不可或缺的书。这本书深入探讨了具身智能这一结合物理机器人和智能算法的领域,该领域正在塑造自主系统及其应用的未来。 开篇部分探讨了具身智能
    发表于 12-28 21:12

    【「具身智能机器人系统」阅读体验】+初品的体验

    的学习资源,以培养更多的专业人才。随着具身智能机器人技术对社会的影响越来越大,该书还可以向公众普及相关的知识,以提升社会对新技术的认知和接受度,从而为技术的发展创造良好的社会环境。 随
    发表于 12-20 19:17

    《具身智能机器人系统》第1-6章阅读心得之具身智能机器人系统背景知识与基础模块

    要给AI这个聪明的“头脑”装上一副“身体”。这个“身体”可以是一部手机,可以是一台自动驾驶汽车。而人形机器人则是集各类核心尖端技术于一体的载体,是具身智能的代表产品。与传统的软件智能体不同,具身智能
    发表于 12-19 22:26

    鸿蒙机器人与鸿蒙开发板联动演示

    鸿蒙机器人与鸿蒙开发板联动演示,机器人的角色为迎宾机器人,开发板负责人宾客出现监听
    发表于 12-02 14:55

    【书籍评测活动NO.51】具身智能机器人系统 | 了解AI的下一个浪潮!

    。 这些技术的综合应用使具身智能系统能够进行复杂的环境感知、决策制定和物理操作。例如,通过多模态感知技术,智能体能够综合视觉、 听觉和触觉数据,更全面地理解和响应其所处的环境。 具身智能通过提高机器人
    发表于 11-11 10:20

    机器人技术的发展趋势

    机器人技术的发展趋势呈现出多元化、智能化和广泛应用的特点。 一、智能化与自主化 人工智能(AI)与机器学习 : AI和机器学习在机器人领域的
    的头像 发表于 10-25 09:27 1022次阅读

    开源项目!用ESP32做一个可爱的无用机器人

    巧妙设计的杠杆将开关推回“关”位置。这种玩具很常见,许多人已经制作并上传到YouTube上。 作者每年都会挑战自己制作一个技术产品,今年他决定制作这个复杂的项目——可爱无用机器人。这个机器人参考了日本
    发表于 09-03 09:34

    Al大模型机器人

    金航标kinghelm萨科微slkor总经理宋仕强介绍说,萨科微Al大模型机器人有哪些的优势?萨科微AI大模型机器人由清华大学毕业的天才少年N博士和王博士团队开发,与同行相比具有许多优势:语言
    发表于 07-05 08:52

    转运机器人支持Wi-Fi漫游和无轨化激光SLAM导航技术

    随着科技的不断进步,智能机器人已经成为推动产业升级的重要力量。在物流领域,富唯智能转运机器人凭借其卓越的性能和智能化的设计,正逐渐成为行业的新星。
    的头像 发表于 07-01 15:29 257次阅读

    机器人高效导航定位背后SLAM专用芯片的崛起

    电子发烧友网报道(文/李宁远)对移动机器人来说,导航定位是最基本最核心的功能之一,机器人自主移动能力建立在出色的导航定位基础上。目前移动机器人应用得最广泛的导航定位技术无疑是
    的头像 发表于 05-28 00:20 3568次阅读

    其利天下技术·搭载无刷电机的扫地机器人的前景如何?

    随着懒人经济的崛起,智能家居设备的需求呈现出显著的增长态势。作为智能家居领域的一员,扫地机器人因其方便、实用的特性而备受消费者青睐。特别是在无刷电机技术的加持下,扫地机器人不仅提升了清洁效率,还优化
    发表于 05-05 15:03

    技术融合与创新大象机器人水星Mercury X1机器人案例研究!

    定位与映射(SLAM)、机器人操作系统(ROS)、开源计算机视觉(OpenCV)和S-Tag标记码技术来实现复杂环境中的精确物体抓取和移动。 此案例不仅展示了机器人的高级功能,也体现了
    的头像 发表于 04-28 14:18 598次阅读
    <b class='flag-5'>技术</b>融合与创新大象<b class='flag-5'>机器人</b>水星Mercury X1<b class='flag-5'>人</b>形<b class='flag-5'>机器人</b>案例研究!

    什么是SLAMSLAM算法涉及的4要素

    SLAM技术可以应用在无人驾驶汽车、无人机、机器人、虚拟现实等领域中,为这些领域的发展提供了支持。SLAM技术的发展已经逐渐从单纯的定位和地
    发表于 04-04 11:50 2463次阅读

    机器人焊接技术的应用与发展前景

      随着科技的不断发展,机器人焊接技术在制造业中的应用逐渐成为一个备受关注的话题。机器人焊接技术在提高焊接质量和效率方面具有显著优势,相较于传统的人工焊接,
    的头像 发表于 01-25 14:10 1195次阅读
    <b class='flag-5'>机器人</b>焊接<b class='flag-5'>技术</b>的应用与发展前景