0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

浅析Xilinx系列FPGA Select IO简介

YCqV_FPGA_EETre 来源:Ingdan FPGA 作者:Jon Zhu 2021-10-28 16:46 次阅读

在SelectIO简介连载一中介绍了其架构,本章会继续介绍如何使用其gearbox功能来实现不同的比率的串并转换功能。

7 Series FPGA中LVDS使用了ISERDESE2,SDR Rate可设为2,3,4,5,6,7,8。DDR Rate可设为4,6,8,10,14。

4960ff8a-37a6-11ec-82a8-dac502259ad0.png

从UG471的Bitslip部分可以看出在SDR和DDR移位的位数不一样。在SDR模式下,一个Bitslip脉冲使数据左移一位;而在DDR模式下,一个Bitslip脉冲使数据右移一位或左移三位。

49d2be18-37a6-11ec-82a8-dac502259ad0.png

4a2a7e50-37a6-11ec-82a8-dac502259ad0.png

所以在某些传输过程中,可以先传预设值,等待接收方调整Idelay和Bitslip解出正确的预设值后再传输有效数据。

对习惯使用7 Series FPGA用户在接触XilinxUltraScale和UltraScale +器件 SelectIO时感觉不习惯,原因XilinxUltraScale和UltraScale +是ISERDESE3和OSERDESE3组件,使用Select IO需要在IP catlog中选择high_speed_selectio IP Configuration interface 在Serialization Factor选项中只有8或者4可以选择。

4ae86bc2-37a6-11ec-82a8-dac502259ad0.png

Pin Selection选择时会发现IO选择会有一定限制,在Sensor的应用中HP bank理想的硬件设计是在同一个bank中连续放置设备I/O,部分Sensor输出的Serialization Factor需要7:1,6:1,5:1,不能直接使用ISERDES。

对这类应用Xilinx 提供了XAPP1315 7:1的参考设计,那么对6:1,5:1这种应用用户需要在参考设计上改哪里,怎样去改?下面我们提供修改方式供参考。

1、从Data Reception看需要把ISERDESE3 输出的8位数据(Serialization Factor=8)通过gearbox模块转成7,6,5位的数据。其中7位的数据XAPP1315已经做过了,这里我们用6:1的数据为例, 需要从ISERDES3实现Read8 bit 数据通过gearbox 转换为6bit数据。

4b739f8a-37a6-11ec-82a8-dac502259ad0.png

2、对于Read 8 to 6 gearbox设计方式:

4bee50ea-37a6-11ec-82a8-dac502259ad0.png

从数据排列可以分析到8 bit数据在每次读取6 bit数据,经过4次后开始循环,我们通过状态机设计gearbox的代码需只需要实现;

4c7e41f0-37a6-11ec-82a8-dac502259ad0.png

// Read 8 to 6 gearbox

//

always @ (posedge px_clk)

begin

case (px_rd_seq )

3‘h0 : begin

px_data 《=px_rd_curr[5:0];

end

3’h1 : begin

px_data 《={px_rd_curr[3:0], px_rd_last[7:6]};

end

3‘h2 : begin

px_data 《={px_rd_curr[1:0], px_rd_last[7:4]};

end

3’h3 : begin

px_data 《={px_rd_last[7:2]};

end

endcase

end

3、Data Transmission,OSERDES3使用4 bit 输入,参考例程是把ISERDES的数据接到OSERDES,这里我们在参考例程上任然使用ISERDE 到OSERDES的数据传送方式验证。分析知道需要一个6 bit 转4 bit数据的 Gearbox.

4cf6339a-37a6-11ec-82a8-dac502259ad0.png

4、Gearbox设计思路是把6 bit的数据按4bit大小去读取直到数据开始循环。

4d6a22b4-37a6-11ec-82a8-dac502259ad0.png

通过表格客户分析出设计代码做3次循环可以满足要求

4de1f6c2-37a6-11ec-82a8-dac502259ad0.png

Read state machine and gear box

//

always @ (posedge tx_clkdiv4)

begin

if(!tx_enable) begin

rd_addr 《= 4‘b0;

rd_state 《= 3’h0;

end else begin

case (rd_state )

3‘h0 : begin

rd_addr 《= rd_addr + 1’b1;

tx_data 《= rd_curr[3:0];

rd_state《= rd_state + 1‘b1;

end

3’h1 : begin

rd_addr 《= rd_addr;

tx_data 《= {rd_curr[1:0], rd_last[5:4]};

rd_state《= rd_state + 1‘b1;

end

3’h2 : begin

rd_addr 《= rd_addr + 1‘b1;

tx_data 《= rd_last[5:2];

rd_state《= 3’h0;

end

endcase

end

end

5、到这来我们已经完成gearbox 模块的设计,实现LVDS Source Synchronous 6:1。在Serialization and Deserialization部分还需要修改输入的数据

//

// Transmit Data Generation

//

always @ (posedge tx_px_clk)

begin

if(tx_px_reset) begin

tx_px_data[ 5:0 ] 《= 6‘h01;

tx_px_data[11:6 ] 《= 6’h02;

tx_px_data[17:12] 《= 6‘h03;

tx_px_data[23:18] 《= 6’h04;

tx_px_data[29:24] 《= 6‘h05;

end

else begin

tx_px_data[ 5:0 ]《= tx_px_data[ 5:0 ]+1’b1;

tx_px_data[11:6 ]《= tx_px_data[11:6 ]+1‘b1;

tx_px_data[17:12]《= tx_px_data[17:12]+1’b1;

tx_px_data[23:18]《= tx_px_data[23:18]+1‘b1;

tx_px_data[29:24]《= tx_px_data[29:24]+1’b1;

end

end

// Receiver 1 - Data checking per pixelclock

//

always @(posedge rx1_px_clk or negedgerx1_px_ready)

begin

rx1_px_last 《= rx1_px_data;

if(!rx1_px_ready) begin

rx1_match 《= 1‘b0;

end

else if ((rx1_px_data[ 5:0 ]==rx1_px_last[ 5:0 ]+1’b1)&&

(rx1_px_data[11:6 ]==rx1_px_last[11:6 ]+1‘b1)&&

(rx1_px_data[17:12]==rx1_px_last[17:12]+1’b1)&&

(rx1_px_data[23:18]==rx1_px_last[23:18]+1‘b1)&&

(rx1_px_data[29:24]==rx1_px_last[29:24]+1’b1)) begin

rx1_match 《= 1‘b1;

end

else begin

rx1_match 《= 1’b0;

end

end

6、对用户的系统可能需要的lane数量为8,在对应的数据部分需要做对应的修改

4e617050-37a6-11ec-82a8-dac502259ad0.png

Receiver使用ISERDESE3在1:8 DDR模式与8:6分布式RAM基于齿轮箱反序列化和对齐输入数据流。这个实现需要三个时钟域,1/2速率采样时钟(rx_clkdiv2), 1/8速率反序列化数据时钟(rx_clkdiv8),和1/6像素时钟(px_clk),它等于Receiversource clock。

Receiver source clock在MMCM或PLL中乘以6或12以满足VCO频率范围,然后除以2生成1/2速率采样时钟(rx_clkdiv2),除以6生成织物像素时钟(px_clk)。

//

// Instantiate PLL or MMCM

//

generate

if (USE_PLL == “FALSE”)begin // use an MMCM

MMCME3_BASE # (

.CLKIN1_PERIOD (CLKIN_PERIOD),

.BANDWIDTH (“OPTIMIZED”),

.CLKFBOUT_MULT_F (6*VCO_MULTIPLIER),

.CLKFBOUT_PHASE (0.0),

.CLKOUT0_DIVIDE_F (2*VCO_MULTIPLIER),

.CLKOUT0_DUTY_CYCLE (0.5),

.CLKOUT0_PHASE (0.0),

.DIVCLK_DIVIDE (1),

.REF_JITTER1 (0.100)

tx_mmcm (

.CLKFBOUT (px_pllmmcm),

.CLKFBOUTB (),

.CLKOUT0 (tx_pllmmcm_div2),

.CLKOUT0B (),

.CLKOUT1 (),

.CLKOUT1B (),

.CLKOUT2 (),

.CLKOUT2B (),

.CLKOUT3 (),

.CLKOUT3B (),

.CLKOUT4 (),

.CLKOUT5 (),

.CLKOUT6 (),

.LOCKED (cmt_locked),

.CLKFBIN (px_clk),

.CLKIN1 (clkin),

.PWRDWN (1‘b0),

.RST (reset)

);

end else begin // Use aPLL

PLLE3_BASE # (

.CLKIN_PERIOD (CLKIN_PERIOD),

.CLKFBOUT_MULT (6*VCO_MULTIPLIER),

.CLKFBOUT_PHASE (0.0),

.CLKOUT0_DIVIDE (2*VCO_MULTIPLIER),

.CLKOUT0_DUTY_CYCLE (0.5),

.REF_JITTER (0.100),

.DIVCLK_DIVIDE (1)

tx_pll (

.CLKFBOUT (px_pllmmcm),

.CLKOUT0 (tx_pllmmcm_div2),

.CLKOUT0B (),

.CLKOUT1 (),

.CLKOUT1B (),

.CLKOUTPHY (),

.LOCKED (cmt_locked),

.CLKFBIN (px_clk),

.CLKIN (clkin),

.CLKOUTPHYEN (1’b0),

.PWRDWN (1‘b0),

.RST (reset)

);

end

7、代码中对应的源语需要升级到ULTRASCALE_PLUS对应的部分

类似的地方:localparam DELAY_VALUE = ((CLKIN_PERIOD*1000)/6 《= 1100.0) ?(CLKIN_PERIOD*1000)/6 : 1100.0;

ULTRASCALE_PLUS maximumvalue for 1100.0

IDELAYE3 SIM_DEVICE(“ULTRASCALE_PLUS”), // Set the device version for simulationfunctionality (ULTRASCALE// ULTRASCALE_PLUS,recommended to re-call IDELAYE3 in the ULTRASCALE_PLUSdirectory

8、所以以模块修完之后通过软件仿真验证修改的数据跟XAPP1315的数据对比,设计中采用parameter DATA_FORMAT = “PER_CLOCK”,数据格式会安装PER_CLOCK方式排列LVDS Source Synchronous 6:1 Serializationand Deserialization Using Clock Multiplication。

4ecad428-37a6-11ec-82a8-dac502259ad0.png

Xapp1315 LVDS Source Synchronous 7:1Serialization and Deserialization Using Clock Multiplication仿真数据:

4fe25692-37a6-11ec-82a8-dac502259ad0.png

综上所述,通过数据比对分析数据没有问题,从而实现此功能。

编辑:jq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • FPGA
    +关注

    关注

    1629

    文章

    21748

    浏览量

    603978
  • 数据
    +关注

    关注

    8

    文章

    7067

    浏览量

    89129
  • Xilinx
    +关注

    关注

    71

    文章

    2167

    浏览量

    121601
  • 时钟
    +关注

    关注

    11

    文章

    1735

    浏览量

    131543
收藏 人收藏

    评论

    相关推荐

    【米尔-Xilinx XC7A100T FPGA开发板试用】测试一

    感谢米尔电子和电子发烧友提供的米尔-Xilinx XC7A100T FPGA开发板。 MYD-J7A100T用的 FPGAXILINX 公司 ARTIX-7
    发表于 12-08 08:48

    dac3174与xilinx zynq7000系列连接,fpga的案例参考代码有没有?

    dac3174与xilinx zynq7000系列连接,fpga的案例参考代码有没有? tsw1400_lvds_dac_sample_wise_restored的代码写的实在太难度了,一句注释都没有
    发表于 11-25 06:04

    采用Xilinx FPGA的AFE79xx SPI启动指南

    电子发烧友网站提供《采用Xilinx FPGA的AFE79xx SPI启动指南.pdf》资料免费下载
    发表于 11-15 15:28 0次下载
    采用<b class='flag-5'>Xilinx</b> <b class='flag-5'>FPGA</b>的AFE79xx SPI启动指南

    【米尔-Xilinx XC7A100T FPGA开发板试用】+01.开箱(zmj)

    ://www.myir-tech.com/ //------米尔-Xilinx XC7A100T FPGA开发板产品简介 https://www.myir.cn/shows/141/75.html 2.开发板介绍 2.1开发板
    发表于 11-12 15:45

    Linux--IO多路复用(select,poll,epoll)

    IO多路复用——select,poll,epollIO多路复用是一种操作系统技术,旨在提高系统处理多个输入输出操作的性能和资源利用率。与传统的多线程或多进程模型相比,IO多路复用避免了因阻塞I
    的头像 发表于 11-06 16:13 313次阅读

    Xilinx 7系列FPGA PCIe Gen3的应用接口及特性

    Xilinx7系列FPGA集成了新一代PCI Express集成块,支持8.0Gb/s数据速率的PCI Express 3.0。本文介绍了7系列FP
    的头像 发表于 11-05 15:45 972次阅读
    <b class='flag-5'>Xilinx</b> 7<b class='flag-5'>系列</b><b class='flag-5'>FPGA</b> PCIe Gen3的应用接口及特性

    Xilinx ZYNQ 7000系列SoC的功能特性

    本文介绍下Xilinx ZYNQ 7000系列SoC的功能特性、资源特性、封装兼容性以及如何订购器件。
    的头像 发表于 10-24 15:04 891次阅读
    <b class='flag-5'>Xilinx</b> ZYNQ 7000<b class='flag-5'>系列</b>SoC的功能特性

    一文了解FPGA比特流的内部结构

    比特流是一个常用词汇,用于描述包含FPGA完整内部配置状态的文件,包括布线、逻辑资源和IO设置。大多数现代FPGA都是基于SRAM的,包括Xilinx Spartan和Virtex
    的头像 发表于 07-16 18:02 7872次阅读
    一文了解<b class='flag-5'>FPGA</b>比特流的内部结构

    FPGA | Xilinx ISE14.7 LVDS应用

    今天给大侠带来 Xilinx ISE14.7 LVDS应用,话不多说,上货。 最近项目需要用到差分信号传输,于是看了一下FPGA上差分信号的使用。Xilinx FPGA中,主要通过
    发表于 06-13 16:28

    FPGA核心板 Xilinx Artix-7系列XC7A100T开发平台,米尔FPGA工业开发板

    MYC-J7A100T核心板及开发板Xilinx Artix-7系列XC7A100T开发平台,FPGA工业芯XC7A100T-2FGG484I具有高度的可编程性和灵活性;高速传输和处理,具有285个
    发表于 05-31 15:12 9次下载

    中国FPGA市场竞争格局分析

    AMD(XilinxFPGA相关产品矩阵主要包括:四大 FPGA产品系列(VIRTEX、KINTEX、ARTIX、SPARTAN),以及集成度更高的两大自适应 SoC(Adaptiv
    发表于 04-26 17:01 1295次阅读
    中国<b class='flag-5'>FPGA</b>市场竞争格局分析

    Xilinx 7系列FPGA功能特性介绍

    Xilinx7系列FPGA由四个FPGA系列组成,可满足一系列系统需求,从低成本、小尺寸、成本敏
    发表于 04-22 10:49 5494次阅读
    <b class='flag-5'>Xilinx</b> 7<b class='flag-5'>系列</b><b class='flag-5'>FPGA</b>功能特性介绍

    Xilinx fpga芯片系列有哪些

    Xilinx FPGA芯片拥有多个系列和型号,以满足不同应用领域的需求。以下是一些主要的Xilinx FPGA芯片
    的头像 发表于 03-14 16:24 3357次阅读

    AMD Xilinx 7系列FPGA的Multiboot多bit配置

    Multiboot是一种在AMD Xilinx 7系列FPGA上实现双镜像(或多镜像)切换的方案。它允许在FPGA中加载两个不同的配置镜像,并在需要时切换。
    的头像 发表于 02-25 10:54 1309次阅读
    AMD <b class='flag-5'>Xilinx</b> 7<b class='flag-5'>系列</b><b class='flag-5'>FPGA</b>的Multiboot多bit配置

    FPGA设计高级技巧 Xilinx

    FPGA设计高级技巧 Xilinx
    发表于 01-08 22:15