电子发烧友网报道(文/李诚)电动汽车的发展已进入快车道,据商务部统计数据显示,今年我国前三季度新能源汽车成交量215.7万辆,市场渗透率12.4%。电动汽车智能化的发展,也为BMS系统迎来了新的变革。汽车BMS系统是汽车与电池组之间通信的桥梁,起到对电池组运行的温度、电压、电流,进行实时的数据采集、分析、储存,并将采集、分析好的数据与外部设备完成交换,避免电池过充、过放、温度过高等问题的出现,在一定程度上保证了电池的性能,延长了电池的寿命。
图源:ADI
无线BMS系统的优、劣
目前,汽车BMS系统按通信方式可分为:有线BMS系统、无线BMS系统。有线BMS系统是通过CAN总线或iosSPI总线作为菊花链形式,将电池组、从控芯片与主控芯片连接起来,实现数据监测、传输的;无线BMS系统是通过无线组网的形式,将电池组、从控芯片与主控芯片连接,通过无线通信完成电池组的状态监测和数据传输。
灵活性,无线BMS系统使用无线网络作为连接方式,摆脱线缆的束缚,这使得电池组可以灵活地布局摆放,并且,可根据实际需求,随意增加或删减对电池实时状态侦测的设备。
稳定性,有线BMS是通过线缆连接的方式进行通信,线缆长时间在高温的汽车内部环境使用,通常会出现线路老化的问题,一旦出现问题,众多的线缆会给检测与修复带来较大的难度。而无线BMS就不用担心通信线缆老化的问题,并且数据的传输速率和时延都能得到较好的保证,提高了对电池组状态的感知能力。
成本低,无线BMS与有线BMS系统,最本质的区别就是减少了通信线缆的铺设,通信线缆和连接器的用量都会有所减少,在一定程度上降低了造车成本,减小了BMS系统的空间占比。
不足,由于无线BMS采用的是无线通信的方式,与有线BMS内部闭环通信不同,若无线通信的安全系数不高,可能会存在传输的数据信息被拦截获取的情况。
虽然电动车的保有量日渐增多,但消费者对电动汽车的安全性和续航里程仍有顾虑,为打消消费者这一顾虑,TI、ADI等相继推出了无线BMS解决方案。
TI 无线BMS系统解决方案
TI为提高电动车的续航能力,于今年初,发布了无线BMS解决方案,该方案采用CC2662R-Q1无线MCU与BQ79616-Q1电池监控器的方式,实现对电池电量、温度、电流、电压的检测,并将数据通过无线传输的方式与主控芯片完成通信。方案的发布减少了通信线路的铺设,提高了电动汽车的可靠性和效率,是首个通过ASIL-D验证的无线BMS。
图源:TI
SimpleLinkCC2662R-Q1是应用于汽车BMS系统的无线MCU,该MCU采用的是基于ARM架构的Cortex-M4F,主频频率达-48MHz。CC2662R-Q1内部集成了352KB的可编程Flash、256KB的ROM、8KB的SRAM。CC2662R-Q1支持2.4 GHz WiFi、低功耗蓝牙、Zigbee、Sub-1 GHz等无线通讯方式,并且兼容TI专有的无线BMS协议,可实现快速组网。CC2662R-Q1具有低功耗的特点,接收状态电流为 6.9 mA,发射信号强度在0 dBm和5 dBm时,工作电流分别为7.3 mA和9.6 mA,处于待机状态时待机电流为0.94μA。
据TI官方显示,通过TI专有的无线通信协议进行数据传输,具有延时低、传输速率高(1.2Mbps数据吞吐)等特点,并且具有较高的稳定性,数据丢包率极低,PER(<10-7)。CC2662R-Q1无线MCU还支持无线OTA,系统拓展性强。
BQ79616-Q1是一款16通道的汽车电池监控芯片,主要应用于高压BMS中,对高压电池实时监控。该芯片能在 128μs内完成一个周期的电池数据检测。BQ79616-Q1片上集成了数模转换器、低通滤波器,方便对滤波后的直流电压进行监测,提高电压监测精度,方便MCU对电池充电状态的判断。同时,BQ79616-Q1还具有电池温度监测和电池内部自动平衡的功能,一点监测到电池数据异常,会立即停止电池的充放电做工,避免电池温度过高,引发火灾其他危险。
BQ79616-Q1采用了,电容隔离和变压器隔离的双隔离式双向菊花链,将电池连接起来。在接口方面,该芯片具有8个GPIO口和一个专用 UART 接口,通过GPIO口可对外部电路的热敏电池进行测量,通过UART 接口可以与主控器进行通信。BQ79616-Q1具有自动反向唤醒功能,一般工作状态下,MCU自动进入休眠模式,当监测到数据异常时,BQ79616-Q1会反向唤醒MCU。这一功能主要是为了,在汽车停止的状态下,也能对电池状态进行监测,并降低系统功耗。
TI就是采用一个 CC2662R-Q1无线MCU与多个BQ79616-Q1电池监控器相连的方式,实现无线BMS系统。
ADI无线BMS系统解决方案
ADI早前就推出了电动汽车无线BMS系统解决方案,该方案是将SmartMesh与LTC6811电池监控器相结合,实现电池状态监控和数据的无线传输。这一方案提高个电动汽车的可靠性,以及降低了线路铺设的复杂性。
SmartMesh+LTC6811无线BMS拓扑 图源:ADI
ADI的无线BMS解决方案中,并未明确表明SmartMesh无线MCU的具体型号,电池监控器采用的是LTC6811。
LTC6811-1是一款电池组监视器,最高可对12组串联电池进行高精度的电压检测,测量误差小于1.2mV,完成12节的电池检测仅需290μs。LTC6811-1可将多节电池串联起来,因此该芯片可在高电压的电池串中完成电池状态实时监测。该芯片还具有isoSPI接口,可实现与器件之间高速的远程通信。LTC6811能将12组电池通过菊花链连接,实现多通道通信的功能,监测电池状态,并根据电池当前状态进行暂停和启动操作,该芯片采用隔离式电源供电。
ADI表示,通过这一组合方案,可节省9成以上的线缆,减小1成以上的电池体积,为电池的布局和拆卸提供了良好的灵活性,并且,电池的使用寿命和电池数据的测量精度不会受到影响。
图源:ADI
无线BMS系统的优、劣
目前,汽车BMS系统按通信方式可分为:有线BMS系统、无线BMS系统。有线BMS系统是通过CAN总线或iosSPI总线作为菊花链形式,将电池组、从控芯片与主控芯片连接起来,实现数据监测、传输的;无线BMS系统是通过无线组网的形式,将电池组、从控芯片与主控芯片连接,通过无线通信完成电池组的状态监测和数据传输。
灵活性,无线BMS系统使用无线网络作为连接方式,摆脱线缆的束缚,这使得电池组可以灵活地布局摆放,并且,可根据实际需求,随意增加或删减对电池实时状态侦测的设备。
稳定性,有线BMS是通过线缆连接的方式进行通信,线缆长时间在高温的汽车内部环境使用,通常会出现线路老化的问题,一旦出现问题,众多的线缆会给检测与修复带来较大的难度。而无线BMS就不用担心通信线缆老化的问题,并且数据的传输速率和时延都能得到较好的保证,提高了对电池组状态的感知能力。
成本低,无线BMS与有线BMS系统,最本质的区别就是减少了通信线缆的铺设,通信线缆和连接器的用量都会有所减少,在一定程度上降低了造车成本,减小了BMS系统的空间占比。
不足,由于无线BMS采用的是无线通信的方式,与有线BMS内部闭环通信不同,若无线通信的安全系数不高,可能会存在传输的数据信息被拦截获取的情况。
虽然电动车的保有量日渐增多,但消费者对电动汽车的安全性和续航里程仍有顾虑,为打消消费者这一顾虑,TI、ADI等相继推出了无线BMS解决方案。
TI 无线BMS系统解决方案
TI为提高电动车的续航能力,于今年初,发布了无线BMS解决方案,该方案采用CC2662R-Q1无线MCU与BQ79616-Q1电池监控器的方式,实现对电池电量、温度、电流、电压的检测,并将数据通过无线传输的方式与主控芯片完成通信。方案的发布减少了通信线路的铺设,提高了电动汽车的可靠性和效率,是首个通过ASIL-D验证的无线BMS。
图源:TI
SimpleLinkCC2662R-Q1是应用于汽车BMS系统的无线MCU,该MCU采用的是基于ARM架构的Cortex-M4F,主频频率达-48MHz。CC2662R-Q1内部集成了352KB的可编程Flash、256KB的ROM、8KB的SRAM。CC2662R-Q1支持2.4 GHz WiFi、低功耗蓝牙、Zigbee、Sub-1 GHz等无线通讯方式,并且兼容TI专有的无线BMS协议,可实现快速组网。CC2662R-Q1具有低功耗的特点,接收状态电流为 6.9 mA,发射信号强度在0 dBm和5 dBm时,工作电流分别为7.3 mA和9.6 mA,处于待机状态时待机电流为0.94μA。
据TI官方显示,通过TI专有的无线通信协议进行数据传输,具有延时低、传输速率高(1.2Mbps数据吞吐)等特点,并且具有较高的稳定性,数据丢包率极低,PER(<10-7)。CC2662R-Q1无线MCU还支持无线OTA,系统拓展性强。
BQ79616-Q1是一款16通道的汽车电池监控芯片,主要应用于高压BMS中,对高压电池实时监控。该芯片能在 128μs内完成一个周期的电池数据检测。BQ79616-Q1片上集成了数模转换器、低通滤波器,方便对滤波后的直流电压进行监测,提高电压监测精度,方便MCU对电池充电状态的判断。同时,BQ79616-Q1还具有电池温度监测和电池内部自动平衡的功能,一点监测到电池数据异常,会立即停止电池的充放电做工,避免电池温度过高,引发火灾其他危险。
BQ79616-Q1采用了,电容隔离和变压器隔离的双隔离式双向菊花链,将电池连接起来。在接口方面,该芯片具有8个GPIO口和一个专用 UART 接口,通过GPIO口可对外部电路的热敏电池进行测量,通过UART 接口可以与主控器进行通信。BQ79616-Q1具有自动反向唤醒功能,一般工作状态下,MCU自动进入休眠模式,当监测到数据异常时,BQ79616-Q1会反向唤醒MCU。这一功能主要是为了,在汽车停止的状态下,也能对电池状态进行监测,并降低系统功耗。
TI就是采用一个 CC2662R-Q1无线MCU与多个BQ79616-Q1电池监控器相连的方式,实现无线BMS系统。
ADI无线BMS系统解决方案
ADI早前就推出了电动汽车无线BMS系统解决方案,该方案是将SmartMesh与LTC6811电池监控器相结合,实现电池状态监控和数据的无线传输。这一方案提高个电动汽车的可靠性,以及降低了线路铺设的复杂性。
SmartMesh+LTC6811无线BMS拓扑 图源:ADI
ADI的无线BMS解决方案中,并未明确表明SmartMesh无线MCU的具体型号,电池监控器采用的是LTC6811。
LTC6811-1是一款电池组监视器,最高可对12组串联电池进行高精度的电压检测,测量误差小于1.2mV,完成12节的电池检测仅需290μs。LTC6811-1可将多节电池串联起来,因此该芯片可在高电压的电池串中完成电池状态实时监测。该芯片还具有isoSPI接口,可实现与器件之间高速的远程通信。LTC6811能将12组电池通过菊花链连接,实现多通道通信的功能,监测电池状态,并根据电池当前状态进行暂停和启动操作,该芯片采用隔离式电源供电。
ADI表示,通过这一组合方案,可节省9成以上的线缆,减小1成以上的电池体积,为电池的布局和拆卸提供了良好的灵活性,并且,电池的使用寿命和电池数据的测量精度不会受到影响。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。
举报投诉
-
ADI
+关注
关注
144文章
45812浏览量
248615 -
德州仪器
+关注
关注
123文章
1686浏览量
140567
发布评论请先 登录
相关推荐
超越线缆的束缚:AMS-WE100P HDMI无线延长器通过Amoonsky开启高清革命
与接收器,也称为AMS-WE100P HDMI无线延长器——这一创新将重新定义我们对高清内容传输的理解。该设备标志着一个范式转变,将高清视频和音频从传统电缆和线缆的束缚中解放出来。 现代视觉体验需要无缝沉浸式观看体验。通过AMS
欧盟《新电池法》创造新需求,基于NFC的无线BMS受关注
电子发烧友网报道(文/梁浩斌)传统BMS普遍采用菊花链的拓扑结构,对于汽车电池包而言,繁杂的线束和接口给电池包带来了较大的重量负担,同时复杂的系统导致单个模块失效造成的影响较大。因此,无线BM
储能bms和动力bms哪个好
储能bms和动力bms都是非常不错的电池管理系统,各有优势,具体哪个更好要根据实际的应用场景和需求来决定。储能BMS和动力BMS是两种不同类
BMS电池管理系统故障如何解决
电池管理系统(BMS)是电动汽车、储能系统等应用中的关键组件,负责监控和管理电池的充放电过程,确保电池的安全、稳定和高效运行。然而,BMS系统
BMS电池管理系统的组成有哪些
BMS(Battery Management System)电池管理系统是电动汽车、储能系统等电池应用中的关键技术之一,其主要作用是保证电池组的安全、稳定、高效运行。以下是对BMS电池
BMS电池管理系统的作用有什么?如何设计电池管理系统 (BMS)
BMS电池管理系统(Battery Management System)是电动汽车、储能系统等电池应用中的关键技术之一。它的作用主要包括以下几个方面: 电池状态监测 BMS可以实时监测
一种摆脱有线束缚的通信技术--无线传输
常见的近距离无线通信技术主要有以下几种:蓝牙(Bluetooth):这是一种近距离、低功耗的无线通讯标准,支持设备短距离通信(10m左右)。常用于无线鼠标、无线键盘或手持移动终端等设备
解密BMS电池管理系统
BMS电池管理系统(BatteryManagementSystem)是一种用于监控和管理电池组的设备,它主要应用于需要精确电池管理的领域,如电动汽车、无人机、便携式电子设备和储能系统等。二、电池管理
如何设计电池管理系统 (BMS)
BMS 监控电池组以保护电池和系统的其余部分。不合格的BMS不仅会降低系统的安全性,而且还会提供不准确的电池SOC管理。这些不准确性对产品的最终质量有非常显着的影响,因为它们可能导致潜
无线数字会议系统的设计理念与功能
:无线数字会议系统的设计初衷是为了打破传统有线会议系统的束缚,提供更加便捷的会议体验。通过无线连接方式,参会者可以在会议室内自由移动,不受
基于NFC的无线电池管理BMS使用方法
欧盟开始导入电池护照计划以后,需要跟踪电池的使用情况。电池管理系统(BMS)的重要性不断凸显,研究人员开始关注无线解决方案,提出了一种基于近场通信(NFC)的无线解决方案,旨在填补现有
评论