0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

想解决LED驱动芯片的过热和离板不确定性问题吗?

电子设计 来源:电子设计 作者:电子设计 2022-01-12 15:00 次阅读

Other Parts Discussed in Post:TPS92633-Q1

如今,线性LED驱动芯片越来越多地应用于汽车车身照明系统,且尤其适合应用在尾灯模块。多年来TI一直致力于为汽车行业用户提供最具竞争力的LED驱动解决方案,构建创新、可靠、经济高效的汽车照明系统。

在您设计车身照明系统时,是否也曾被散热和离板设计等问题困扰?TI最新推出的C位产品TPS92633-Q1将为您带来变革式的解决方案。如下图所示,TPS92633-Q1一方面采用外部分流电阻来分担热量,另一方面支持off board binning resistor,这使得离板设计变得更加容易,极大地解放了生产线端的压力。此外,该新产品还支持4.5V-40V的电压输入范围和三个通道输出,每个通道的输出电流高达150mA。

poYBAGGKRn6Ac3drAABmS_In6g0576.png

TPS92633-Q1 原理图

更好的散热性能:外部分流电阻

在尾灯模块的设计中,线性驱动芯片在散热上的短板使其通常无法支持很高的功率。为了防止出现“芯片过热”或“系统过热”,设计者通常只能依靠成本较高的大面积散热设计来实现所需的输出功率。

TPS92633-Q1的亮点之一就是搭载了可以分担热量的外部分流电阻,在改善散热性能的同时减少了系统BOM成本。

poYBAGGKRoCAA2GJAAAX4SML0WQ143.png

分流电阻工作原理

当输入电压较低且接近LED所需的正向压降时,默认的电流源通道(绿色线路)输出电流。 当输入电压高于LED所需的正向压降时,另外一路电阻通路(红色线路)也同时打开,分担电流和功耗。

pYYBAGGKRoGAFNACAABso1rmGIo176.png

输入电压 VS. 输出电流

不同输入电压下的输出电流与功耗对比如下图所示。Itotal是流向LED的总电流,等于流经OUT引脚和Rres引脚的电流之和。 下图中黑线为系统总功耗,等于芯片和电阻的功耗之和。我们可以看到,借助Rres的分流,芯片本身的功耗明显降低,从而有效控制了热量的产生。

poYBAGGKRoOAYQJ3AABT2c4TD3E272.png

输入电压 VS. 功耗

TPS92633-Q1的热测试结果如下图所示。通常,乘用车电池的电压范围为9V至16V,汽车尾灯的环境温度最高为85°C。 我们在这些条件下进行了模拟测试,当Vin为16V时,TPS92633-Q1借助分流电阻来分担系统的热量,可以支持最高450mA的电流,而没有分流电阻的对照芯片在相同的环境温度下则会直接触发热关断保护。

pYYBAGGKRoWARWjrAAPFxPJCeE4770.png

热测试对比结果

更便捷、低成本的方案: Off-board Binning Resistor.

在进行离板设计时,由于LED生产工艺的限制,必须将LED板与芯片板匹配来统一LED的亮度,这往往是比较繁琐但又无法省略的一个步骤。哪怕是在同一批次的LED产品中,也会存在不同的bins。用户在购买了整批LED后,仍需要通过binning resistor来设置不同bins LED的电流来统一亮度。

现有的解决方案如下图所示,考虑到芯片抗扰性,binning resistor必须与驱动芯片放在同一块板上,那么也就必须为不同的驱动芯片板设计不同的binning resistor。 为了将LED板与驱动芯片板匹配,我们需要使用条码或二维码进行识别,这大大增加了设计复杂度与制造成本开销。

pYYBAGGKRoeAceYdAADrVB0NNnY513.png

现有方案:Binning resistors与驱动芯片在同一块板上

TPS92633-Q1的另一亮点就是其ICTRL引脚支持off-board binning resistor,这一设计完美地解决了上述难题。如下图所示,我们在制造过程中可以直接将binning resistor放置在LED板上,这样只需要设计一种驱动芯片板即可匹配所有bins的LED板,大大降低了制造成本。

poYBAGGKRomANtOLAAC1WZ9GgNA352.png

TPS92633-Q1方案:off-board binning resistor

除了支持off-board binning resistor之外,TPS92633-Q1还支持通过在ICTRL引脚连接NTC来实现thermal derating。当温度升高时NTC阻值会减小,RICTRL上的电压会降低,从而降低输出电流以进行过热保护,下图为测试结果。

pYYBAGGKRoqAN2LQAAA0XWWc1BY659.png

温度 VS. 输出电流

结论

在设计车身照明系统时,散热性能是最关键的设计考虑因素之一。在现有的线性LED驱动方案中,所有电压降均由芯片承担,往往会导致芯片和系统过热。LED板和驱动板的匹配是设计过程中的另一个难点,若将binning resistor与驱动芯片放在同一块板上,则会增加额外的成本。

德州仪器(TI)的全新明星产品TPS92633-Q1提供了可靠、高效、低成本的解决方案,其外部分流电阻可以有效分担散热压力,同时支持off-board binning resistor来进行离板设计。

设计示例

1.实现One-Fail-All-Fails功能的BCM控制式尾灯设计示例

TPS92633-Q1能够驱动不同功能的汽车尾灯,包括刹车灯、转向灯、雾灯、倒车灯等;在多颗TPS92633-Q1共同使用的场景中,可以通过将FAULT引脚连接起来轻松实现One-Fail-All-Fails功能。

pYYBAGGKRoyAJMbMAAEEzxCPccw500.png

原理图设计

1.1 设计需求

乘用车电瓶的输入电压范围为9V至16V,一般需要每路3个共9个LED来实现刹车灯功能;每个LED的最大正向压降VF_MAX为2.5V,最小正向压降VF_MIN为1.9V;每个LED的电流I(LED)要求为140mA;LED的亮度和开关则直接由车身控制模块BCM控制;此外,还需要单个LED的短路检测功能,并实现刹车灯One-Fail-All-Fails功能。

1.2 详细设计步骤

STEP 1:当ICTRL电阻与TPS92633-Q1放置在同一块板上时,TI推荐设置I(IREF)为100uA;使用如下公式得到R(IREF),其中V(IREF) = 1.235V,I(IREF) = 100uA (推荐值),此时R(IREF)为12.3kΩ。

poYBAGGKRo6AfD1lAAAK8Dy56HQ661.png

STEP 2:当ICTRL引脚不用于驱动off-board binning resistor或NTC电阻时,TI推荐设置V(CS_REG)为100mV;使用如下公式通过设计ICTRL电阻R(ICTRL)阻值来设定V(CS_REG)电压(SUPPLY引脚与INx引脚间电压),其中V(CS_REG) = 100mV (推荐值),I(IREF) = 100uA (推荐值)。此时,R(ICTRL)为680Ω。

pYYBAGGKRpCAP6SuAAAUxOvq9yk904.png

STEP 3:当每一路输出电流I(OUTx_Tot) = 140mA时,使用如下公式得到R(SNSx)阻值(SUPPLY引脚与INx引脚间电阻),其中V(IREF) = 1.235V,R(ICTRL) = 680Ω,R(IREF) = 12.3kΩ,I(OUTx_Tot) = 140mA。此时,R(SNSx) = 0.717Ω。

poYBAGGKRpGAHeSMAAAfj7x_1QY312.png

根据设计需求,每一路的输出电流是相同的,因此R(SNS1) = R(SNS2) = R(SNS3) = 0.717Ω。这里需注意0.717Ω不是标准的电阻值,因此需要并联两个电阻才能获得等效的0.717Ω电阻。

STEP 4:使用如下公式计算分流电阻R(RESx)的阻值。R(RESx)的值实际上决定了I(OUTx)和I(RESx)的电流分布,其基本设计原则是使R(RESx)在电源电压下消耗大约50%总功耗。

poYBAGGKRpOAEFfUAAAXVVNG_-g765.png

其中,V(SUPPLY) = 12V,I(OUTx_Tot) = 140mA。当V(OUTx) = 3×2.2V = 6.6V时,R(RESx)(包括R(RES1)、R(RES2)、R(RES3))的阻值为75Ω。

STEP 5:设计诊断单个LED短路的阈值电压,使用如下公式计算用于设置该阈值电压的电阻R(SLS_REF)的阻值。

串联的三个LED的总正向压降最大为3×2.5 V = 7.5V,最小为3×1.9 V = 5.7V。一旦三个LED中的任何一个出现短路故障,其余两个LED串联时的总正向压降为2×2.5 V = 5 V(最大值)和2×1.9 V = 3.8 V(最小值)。因此,我们可以选择5.3 V作为单个LED短路的阈值电压V(SLS_th_falling)。

poYBAGGKRpWAIvkBAAAkA74aaZE968.png

其中V(IREF) = 1.235V,R(IREF) = 12.3kΩ,N(OUT) = 4,N(SLS_REF) = 1。当V(SLS_th_falling) = 5.34V时,R(SLS_REF) = 13.3kΩ。

STEP 6:设计SUPPLY引脚的阈值电压来设置LED开路和单个LED的短路诊断功能,并计算DIAGEN引脚上的分压电阻R1、R2的阻值。

3个LED的最大正向压降为3×2.5 V = 7.5V;为避免在慢上电工作过程中误报开路故障或单个LED的短路,需要考虑SUPPLY引脚和OUTx引脚之间的最小压差;当电源电压低于3个LED的最大正向压降、V(OPEN_th_rising)、V(CS_REG)三者之和时,TPS92633-Q1必须关闭开路检测和单个LED的短路检测功能。分压电阻R1、R2的阻值可通过如下公式计算。

pYYBAGGKRpaAByTpAAApF5YyFiA986.png

其中V(OPEN_th_rising) = 210mV(maximum),V(CS_REG) = 100mV,VIL(DIAGEN) = 1.045V(minimum),R2 = 10kΩ(推荐值)。此时,R1为64.9kΩ。

STEP 7:设计SUPPLY引脚的阈值电压来控制LED通道的开关,并计算PWM输入引脚上分压电阻R3和R4的阻值。

3个LED的最小正向压降为3×1.9 V = 5.7V;为了确保每一路的电流输出正常,当SUPPLY引脚电压低于3个LED的最小正向压降、INx引脚与OUTx引脚间的压降、V(CS_REG)之和时,各路输出应处于关闭状态。分压电阻R3、R4的阻值可通过如下公式计算。

poYBAGGKRpiAb9C5AAAkE9IANmg570.png

其中V(DROPOUT) = 300mV,V(CS_REG) = 100mV,VIH(PWM) = 1.26V(maximum),R4 = 10kΩ(推荐值)。此时,R4为38.3kΩ。

1.3 仿真曲线

pYYBAGGKRpyAVkJVAAMt7HMKTCg671.png

80%亮度SUPPLY调光 & 20%亮度SUPPLY调光

2.离板驱动的独立PWM控制式尾灯设计示例

TPS92633-Q1能够通过PWM1,PWM2和PWM3引脚上的PWM输入独立驱动每一路通道的输出电流。LED和LED binning resistor一起放置在不同于TPS92633-Q1的另一块PCB板上,LED binning resistor连接至ICTRL引脚,用来相应地调整流经LED的电流。

pYYBAGGKRp2AbvW6AADhmPUwFX0320.png

原理图设计

2.1 设计需求

乘用车电瓶的输入电压范围为9V至16V,一般需要每路2个共6个LED来实现转向灯功能;每个LED的最大正向压降VF_MAX为2.5V,最小正向压降VF_MIN为1.9V;LED binning resistor与LED一起放置在另一块PCB板上;不同亮度bins LED所需电流为50 mA、75 mA和100 mA;每一路通道的输出是独立的,由MCU控制。

2.2 设计详细步骤

当不需要单个LED短路诊断功能时,TI建议将SLS_REF引脚接地。

STEP 1:当ICTRL电阻与TPS92633-Q1放置在不同的两块板上时,TI推荐设置I(IREF)为200uA;使用如下公式得到R(IREF),其中V(IREF) = 1.235V,I(IREF) = 200uA (离板推荐值),此时R(IREF)为6.19kΩ。

poYBAGGKRo6AfD1lAAAK8Dy56HQ661.png

STEP 2:当ICTRL电阻与TPS92633-Q1放置在不同的两块板上时,使用如下公式通过设计ICTRL电阻R(ICTRL1)、R(ICTRL2)的阻值来设定V(CS_REG)的电压(SUPPLY引脚与INx引脚间电压),其中I(IREF) = 200uA (推荐值)。

poYBAGGKRqGAKUOCAAAet5EAiAw746.png

对于三种不同的bins的LED,TI推荐在R(SNSx)(SUPPLY引脚与INx引脚间电阻)两端分别施加80mV、120mV和160 mV的电压。下表列出了不同亮度bins LED的R(ICTRL1)、R(ICTRL2)阻值的计算结果,这里建议选择阻值尽可能大的R(ICTRL1)来增强抗噪能力。

pYYBAGGKRqOAPCLmAAD93N4kYnU282.png

STEP 3:使用如下公式得到R(SNSx)阻值,其中V(IREF) = 1.235V,R(IREF) = 6.19kΩ。

poYBAGGKRpGAHeSMAAAfj7x_1QY312.png

根据设计需求,每一路的输出电流是相同的,因此R(SNS1) = R(SNS2) = R(SNS3)。R(SNSx)的计算结果也在上方表格中列出。

STEP 4:使用如下公式计算分流电阻R(RESx)的阻值。R(RESx)的值实际上决定了I(OUTx)和I(RESx)的电流分布,其基本设计原则是使R(RESx)在电源电压下消耗大约50%总功耗。

poYBAGGKRpOAEFfUAAAXVVNG_-g765.png

其中,V(SUPPLY) = 12V,I(OUTx_Tot) = 100mA。当V(OUTx) = 2×2.2V = 4.4V时,R(RESx)(包括R(RES1)、R(RES2)、R(RES3))的阻值为152Ω。

STEP 5:设计用于设置LED开路诊断功能的SUPPLY电压阈值,并使用如下公式计算DIAGEN引脚上分压电阻R1、R2的阻值。

2个LED的最大正向压降为2×2.5 V = 5V;为避免在慢上电工作过程中误报开路故障,需要考虑SUPPLY引脚和OUTx引脚之间的最小压差;当电源电压低于2个LED的最大正向压降、V(OPEN_th_rising)、V(CS_REG)三者之和时,TPS92633-Q1必须关闭开路检测功能。分压电阻R1、R2的阻值可通过如下公式计算。

pYYBAGGKRpaAByTpAAApF5YyFiA986.png

其中V(OPEN_th_rising) = 210mV(maximum),V(CS_REG) = 160mV(maximum),VIL(DIAGEN) = 1.045V(minimum),R2 = 10kΩ(推荐值)。此时,R1为41.2kΩ。

2.3 仿真曲线

poYBAGGKRqqAbDA7AANfHGZ7dyw892.png

200Hz下80%占空比PWM调光 & 600Hz下20%占空比PWM调光
审核编辑:金巧

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • led
    led
    +关注

    关注

    240

    文章

    23100

    浏览量

    657662
  • 电源管理
    +关注

    关注

    115

    文章

    6147

    浏览量

    144150
  • 驱动芯片
    +关注

    关注

    13

    文章

    1246

    浏览量

    54406
收藏 人收藏

    评论

    相关推荐

    计及多重不确定性的规模化电动汽车接入配电网调度方法及解决方案

    摘要:规模日益增长的电动汽车和可再生能源带来的不确定性给配电网的安全运营带来了严峻挑战。为综合考虑多重不确定性、平衡运营成本与系统可靠性,首先,提出一种基于分布鲁棒联合机会约束的电动汽车-配电网
    的头像 发表于 09-14 15:26 282次阅读
    计及多重<b class='flag-5'>不确定性</b>的规模化电动汽车接入配电网调度方法及解决方案

     相对于人工的不确定性,机器人码垛有何优势

     在现代工业生产中,码垛是一项至关重要的任务,它涉及到将不同形状、大小和重量的物品进行有序地堆叠,以便于后续的运输和储存。然而,传统的人工码垛方式存在着诸多不确定性,这些不确定性可能源自工人的疲劳
    的头像 发表于 06-19 14:45 227次阅读

    东芯股份筹划对外投资,不确定性与风险并存

    据了解,标的公司是一家专注于研发多层次(可扩展)图形渲染芯片的设计企业。其G100图形渲染芯片产品已完成市场规格定义、架构设计、ASIC设计、模级和芯片级验证、软件仿真、硬件仿真以及大部分后端设计,目前正进行接口IP集成和最终验
    的头像 发表于 05-13 16:20 380次阅读

    ETAS推出Time-Triggered Scheduling (TTS)的确定性调度解决方案

    在2024年2月26日,ETAS推出了名为“Time-Triggered Scheduling (TTS)”的确定性调度解决方案。
    的头像 发表于 04-25 16:56 2125次阅读
    ETAS推出Time-Triggered Scheduling (TTS)的<b class='flag-5'>确定性</b>调度解决方案

    国星光电研究院推出RGB全彩器件鉴定服务

    受全球经济的不确定性影响,贵金属原材料价格不断上涨,市场上出现不法商家以次充好冒充国星光电LED显示产品、
    的头像 发表于 04-22 10:15 372次阅读

    什么是嵌入式实时系统的确定性?简析EDMS中的确定性

    ETAS Deterministic Middleware Solution点击跳转(EDMS,前身为AOS) 确定性中间件解决方案,是一个中间件框架,旨在面向汽车领域内应用程序的独特挑战和需求
    的头像 发表于 04-15 11:22 1000次阅读
    什么是嵌入式实时系统的<b class='flag-5'>确定性</b>?简析EDMS中的<b class='flag-5'>确定性</b>

    海信马晓龙:坚定长期主义的战略定力,激发“确定性”增长的内生动力

    近年来,在内外因叠加影响下,智慧交通行业充满了变数。当不确定性成为常态,如何驱散迷雾走向增长?这是每一个智慧交通企业必须解决的难题。 选择用什么答案来面对这个难题,决定了企业迎战风浪的命运,海信智慧
    的头像 发表于 03-21 11:38 295次阅读
    海信马晓龙:坚定长期主义的战略定力,激发“<b class='flag-5'>确定性</b>”增长的内生动力

    华玉通软宣布“海鸥”确定性调度中间件(SEAGULL DS)正式商用

    今天,华玉通软(下称“华玉”)宣布“海鸥”确定性调度中间件(SEAGULL DS)正式商用。
    的头像 发表于 03-17 11:01 596次阅读
    华玉通软宣布“海鸥”<b class='flag-5'>确定性</b>调度中间件(SEAGULL DS)正式商用

    上海交大科研团队使用Moku:pro推进在量子光学实验中的多参数估计

    几乎每个对物理学稍有兴趣的人都听说过海森堡不确定性原理。其最著名的假设同时涉及到粒子动量和位置的基本不确定性,即不确定性的乘积有一个下限:提高对一个值的测量精度通常会降低对另一个值的精度。纵使接近
    的头像 发表于 02-19 14:00 408次阅读
    上海交大科研团队使用Moku:pro推进在量子光学实验中的多参数估计

    确定性网络技术如何提高网络的可靠性?

    确定性网络技术通过采用时钟同步、流同步和时序一致性、带宽保障和流量控制、数据包复制与排除等机制,提高网络的可靠性,适用于工业自动化、车辆网络等对通信质量有严格要求的领域。TSN技术的引入为确定性网络应用的发展注入了强大推动力,为各个领域的智能化和自动化提供了坚实的网络基础
    的头像 发表于 01-12 16:50 1084次阅读
    <b class='flag-5'>确定性</b>网络技术如何提高网络的可靠性?

    智能制造的本质是解决不确定性

    6月底去日本AVEX研学时,这家企业特别关注4M的变化,4M变化是指企业采用了新设备,来了新员工,用了新材料,采用新工艺方法,AVEX认为只要有变化,就一定会影响产品的质量。为了减少变化的影响,AVEX专门制定了4M每日的二维巡检表。
    的头像 发表于 01-08 15:56 527次阅读
    智能制造的本质是解决<b class='flag-5'>不确定性</b>

    三星电子急签WOLED订单:为应对LCD供应不确定性

     尽管去年三星电子从LG Display购买的W-OLED电视面板数量有限,但随着市场不确定性的上升和供应链问题的加剧,三星电子正在调整策略,寻求更多元化的供应来源。
    的头像 发表于 01-03 15:10 774次阅读

    复位消抖电路具体长什么样子呢?

    复位信号在使用前一般需要进行消抖处理,也称为复位滤毛刺。复位的抖动可能会导致芯片产生多次复位动作,给系统带来不确定性和误差。
    的头像 发表于 12-04 14:53 1187次阅读
    复位消抖电路具体长什么样子呢?

    消除热电偶温度测量中的不确定性(使用AD594/AD595)

    电子发烧友网站提供《消除热电偶温度测量中的不确定性(使用AD594/AD595).pdf》资料免费下载
    发表于 11-23 11:34 0次下载
    消除热电偶温度测量中的<b class='flag-5'>不确定性</b>(使用AD594/AD595)

    乌卡时代确定性稀缺,企业多云战略最需看中什么?

    双十一刚过,云服务商宕机导致大面积故障的新闻就引爆全网,再一次引发全网关于云计算安全可靠的大讨论。 在一个充满着复杂性、不稳定性不确定性的乌卡时代,云故障频发似乎已发展成一种“常态”,让企业对于云
    的头像 发表于 11-23 10:28 226次阅读