0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

电子设备针对电压缩放的需求也在增加

电子设计 来源:网友电子设计发布 作者:网友电子设计发布 2021-12-16 15:42 次阅读

随着电子设备变得更加具有自我意识,针对电压缩放的需求也在增加。我不是在谈论人工智能,如“2001:太空奥德赛”中的Hal。我指的是具有更多自检的电子设备,这需要读取各种范围的许多电压。

缩放输入电压并非总像第一次那么容易(或复杂)。在本文中,我将介绍如何在最近的需将+/- 10 V信号缩小到0到2.5 V范围信号链设计中解决这个挑战,以匹配所有其他信号到模数转换器ADC)。达到此目标的传递函数呈线性:VOUT = VIN / 8 + 1.25V。

解决方案1:

我的第一个想法是使用同相运算放大器(运放)电路。进行一些快速算术后,我确定了电路,如图1所示,需要1.43V偏置电源,且反馈/接地电阻比为-7/8。

poYBAGGKXHWARWwEAAARnN4yCkc455.png

图1:解决方案1模拟很好,但不可能实现

同相放大器增益公式为(1 + RF / RG)。若增益为+1/8,则电阻比为负。我不能购买一个-7k电阻,因此这是个大问题。我的运放的输入共模范围需低至-10V;这也是一个问题,因为我没有可用的负极电源。显然,在这种情况下,非反相运算放大器电路是不兼容的,但当所需的电压增益大于1时,它确实会工作。

解决方案2:

图2所示的五电阻运算放大器电路是差分放大器,其反相输入接地,同相输入端接1.25V。增益设置为1/8。输入共模范围为0V至2.22V,因此可使用单电源运放。

poYBAGGKXHeAMQiiAAAehDQ7a1k784.png

图2:解决方案2有用,但是有没有更好的解决方案?

解决方案3:

我不需要运算放大器来衰减信号。我可使用三个电阻 - A,B和C - 和电压源V执行所需的缩放任务。参见图3。

pYYBAGGKXHmABM7dAAASvBmcJnk027.png

图3:这个简单的解决方案只使用三个电阻和现有电源

在我所举示例中,增益为1/8,偏移为1.25V。我将使用字母G和Z来表示增益和偏移(零输入的输出);因此,G = 1/8和Z = 1.25V。我的电源电压V为3.3V。

那么,求解电阻器A,B和C的值(或比率)的最好方法是什么?我可使用电阻分压器规则VOUT = VIN * RI /(RG + RI),使用公式1和2计算G和Z:

pYYBAGGKXHyAM5DPAAAXhOD1vs4952.png

|| 符号表示“并行”;例如,x || y是x*y/(x+y) 或 1/(1/x+1/y)。

使用电阻分压器规则解决这些方程将并不完美,因为很容易犯错。我知道 - 因为我犯过错。

涉及使用确定式的更清晰的方法是使用三个方程式以[x1a + x2b + x3c =常数]的形式求解三个未知数。

为让我的生活更便利,我将电阻[A,B,C]变为电导[1 / A,1 / B,1 / C] = [a,b,c]。

我使用Kirchhoff的电流定律来创建基于所需电压增益的第一个方程。我设置VIN = 1VAC,使G = VOUT。参见图4。公式3是交流电流公式:

pYYBAGGKXH6AZGu1AAAG0-0toTE109.png

poYBAGGKXIGAVNgCAAAVyS9iA-k026.png

图4:基尔霍夫方程3的电流原理图

我使用基尔霍夫电流定律来创建基于所需电压偏移的第二个方程。我设置VIN = 0V,VOUT = Z,这是0V输入的输出电压,见图5。因此,等式4是:

pYYBAGGKXIWAVWvBAAAGUlbYwbQ061.png

poYBAGGKXIeAeEuEAAAbyKc2IFM082.png

图5:基尔霍夫方程4的电流原理图

您需要第三个方程,然后才能求解三个未知数中的三个方程。任何方程式都会有如此行为;例如,将电阻A设置为10k可得出公式5:

pYYBAGGKXIqAOTqzAAAGxQMnCus118.png

现在,您可使用确定式求解所有三个电阻,并同时将求解的电导[a,b,c]转换回电阻[A,B,C]。记住,G是增益,Z是0V输入的输出,V是电源电压。图6所示为使用三个方程的解。

poYBAGGKXIyAEGQ5AACGhhzd3wY463.png

图6:三个方程的解

手动求解确定式也可能导致数学错误,因此让Microsoft Excel或其他数学课程替您解决。我的解决方案是电阻[A,B,C] = [10k,2.52k,3.3k]。舍入到最接近的1%,电阻为[10k,2.55k,3.3k]。

若任何电阻值出现负值,表明解决方案不可构建,请尝试更改C电阻的电源(振幅和极性),并验证所需的增益是否小于1。

将解决方案3应用于多路复用通道ADC应用:

图7是我的终接电路,可用来缩放通道1的+ / 10V信号。原理图还包括一个SN74LV4051A 8通道输入多路复用器、TLV341A放大器/缓冲器和一个ADS7040 ADC。

poYBAGGKXI-ANOjLAABYI2HNNaY688.png

图7:八通道模拟量比例解决方案(显示两个输入)

三电阻解决方案简单准确。但请记住,源信号的输入阻抗和置于输出上的负载阻抗将构成缩放器的一部分,并影响精度。

审核编辑:何安淇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电阻
    +关注

    关注

    86

    文章

    5471

    浏览量

    171674
  • 模拟
    +关注

    关注

    7

    文章

    1421

    浏览量

    83897
  • 信号
    +关注

    关注

    11

    文章

    2780

    浏览量

    76634
收藏 人收藏

    评论

    相关推荐

    ESD产品对于电子设备的保护

    在以下几个方面: 性能下降 :ESD可能会导致电子设备的性能下降,影响其正常工作。 数据丢失 :某些情况下,ESD可能会导致数据丢失,尤其是存储设备中。
    的头像 发表于 11-14 11:11 335次阅读

    静电对电子设备的影响

    电子设备我们的日常生活中扮演着越来越重要的角色,从个人电脑、智能手机到复杂的工业控制系统。然而,这些设备容易受到静电放电(ESD)的影响。静电放电是指当两个表面带有不同电荷的物体接
    的头像 发表于 11-05 10:14 439次阅读

    欧姆定律对电子设备的影响

    欧姆定律对电子设备的影响是深远且广泛的,主要体现在以下几个方面: 一、电路设计与优化 精确计算电阻值 : 欧姆定律提供了一种方法来精确计算和调整电阻值,以实现所需的电流和电压水平。这对于高精度
    的头像 发表于 10-28 15:22 203次阅读

    不同类型的电子设备对电源滤波器的要求有哪些差异?

    电子设备日益多样化的今天,电源滤波器作为保障设备稳定运行的关键组件,其性能与适应性对设备性能有着至关重要的影响。不同类型的电子设备,由于其
    的头像 发表于 10-22 10:01 113次阅读
    不同类型的<b class='flag-5'>电子设备</b>对电源滤波器的要求有哪些差异?

    PCB板的电流及电子设备中的作用

    电子设备中,PCB(印刷电路板)是连接各种电子元件的关键部件。PCB板的电流是指在PCB板上流动的电能,它对电子设备的正常工作至关重要。然而,PCB板上的电流并非所有电流,它只是
    的头像 发表于 08-15 09:36 550次阅读

    AC/DC电源模块:适用于各种功率需求电子设备

    电子设备本文中,我们将探讨AC/DC电源模块的工作原理、优点以及不同应用领域的应用。  AC/DC电源模块:适用于各种功率需求电子设备
    的头像 发表于 05-24 11:20 602次阅读
    AC/DC电源模块:适用于各种功率<b class='flag-5'>需求</b>的<b class='flag-5'>电子设备</b>

    深圳比创达EMC|EMI电磁干扰:电子设备性能的头号敌人.

    、产生原因、影响、预防及应对策略等方面的内容进行详细介绍,以帮助大家更好地理解和应对这一技术挑战。一、EMI电磁干扰的概述电磁干扰(EMI)是指电子设备工作过程中产生的电磁场对其他电子设备产生的干扰
    发表于 05-21 11:19

    5A降压式能量管理单元(EMU),带PowerWise™自适应电压缩放数据表

    电子发烧友网站提供《5A降压式能量管理单元(EMU),带PowerWise™自适应电压缩放数据表.pdf》资料免费下载
    发表于 04-19 10:35 0次下载
    5A降压式能量管理单元(EMU),带PowerWise™自适应<b class='flag-5'>电压缩放</b>数据表

    深圳比创达电子EMC|EMC电磁兼容性:电子设备稳定运行的保障.

    深圳比创达电子EMC|EMC电磁兼容性:电子设备稳定运行的保障随着科技的飞速发展,电子设备人们的日常生活中发挥着越来越重要的作用。然而,随之而来的电磁干扰问题
    发表于 04-16 10:48

    电子设备里的陶瓷电容

    陶瓷电容作为电子设备中重要的电子元件,具有独特的性能和广泛的应用领域。其高介电常数、温度稳定性、高频特性和低损耗等特点使其电源滤波、信号耦合、振荡电路等各个环节发挥重要作用。同时,陶瓷电容的品质和质量对
    的头像 发表于 04-11 09:30 350次阅读
    <b class='flag-5'>电子设备</b>里的陶瓷电容

    电子设备里的陶瓷电容

    陶瓷电容作为电子设备中重要的电子元件,具有独特的性能和广泛的应用领域。其高介电常数、温度稳定性、高频特性和低损耗等特点使其电源滤波、信号耦合、振荡电路等各个环节发挥重要作用。同时,陶瓷电容的品质和质量对
    的头像 发表于 04-10 16:55 444次阅读
    <b class='flag-5'>电子设备</b>里的陶瓷电容

    具有动态电压缩放功能的双同步降压DC-DC变换器LM3370数据表

    电子发烧友网站提供《具有动态电压缩放功能的双同步降压DC-DC变换器LM3370数据表.pdf》资料免费下载
    发表于 04-10 10:02 0次下载
    具有动态<b class='flag-5'>电压缩放</b>功能的双同步降压DC-DC变换器LM3370数据表

    东芝CSLZ系列齐纳二极管助力电子设备电压浪涌保护

    伴随技术的进步,电子设备越来越趋向于小型化、高密度、多样化和智能化,但是电子设备开关电源时,会产生瞬态电压波动.
    的头像 发表于 03-11 15:58 1319次阅读
    东芝CSLZ系列齐纳二极管助力<b class='flag-5'>电子设备</b>的<b class='flag-5'>电压</b>浪涌保护

    防浪涌TVS:电子设备的保护盾?|深圳比创达电子a

    防浪涌TVS:电子设备的保护盾?相信不少人是有疑问的,今天深圳市比创达电子科技有限公司就跟大家解答一下!电子设备日益普及的今天,我们经常会听到设备
    发表于 01-05 10:19

    电子设备ESD危害原理及防护意义

    放电是由于电荷物体之间的移动而导致的,它会产生短时间的高电压脉冲。当这种脉冲接触到电子设备时,会造成电子元件的瞬间击穿和损坏。静电放电的危害主要体现在以下几个方面: 1.1 元件击穿
    的头像 发表于 01-03 11:20 2464次阅读