0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

一款可无限扩展的软件定时器MultiTimer

strongerHuang 来源:Mculover666 作者:Mculover666 2021-11-16 09:23 次阅读

1. MultiTimer

今天给大家带来的开源项目是 MultiTimer,一款可无限扩展的软件定时器,作者0x1abin,目前收获 95 个 star,遵循 MIT 开源许可协议。

MultiTimer 是一个软件定时器扩展模块,可无限扩展你所需的定时器任务,取代传统的标志位判断方式, 更优雅更便捷地管理程序的时间触发时序。

项目地址:https://github.com/0x1abin/MultiTimer

2. 移植MultiTimer

2.1. 移植思路

开源项目在移植过程中主要参考项目的readme文档,一般只需两步:

  • ① 添加源码到裸机工程中;
  • ② 实现需要的接口

2.2. 准备裸机工程

本文中我使用的是小熊派IoT开发套件,主控芯片STM32L431RCT6:

移植之前需要准备一份裸机工程,我使用STM32CubeMX生成,需要初始化以下配置:

  • 配置一个串口用于打印信息
  • printf重定向

2.3. 添加MultiTimer到工程中

① 复制MultiTimer源码到工程中

② 在keil中添加 MultiTimer的源码文件

③ 将MultiTimer头文件路径添加到keil中

3. 使用MultiTimer

使用时包含头文件:

#include "multi_timer.h"

如果遇到multi_timer.c文件中NULL宏定义报错,则在multi_timer.h中添加头文件即可。

3.1. 创建Timer对象

/* USER CODE BEGIN PV */struct Timer timer1;struct Timer timer2;
/* USER CODE END PV */

3.2. Timer回调函数

/* Private user code ---------------------------------------------------------*//* USER CODE BEGIN 0 */void timer1_callback(){    printf("timer1 timeout!
");}
void timer2_callback(){    printf("timer2 timeout!
");}/* USER CODE END 0 */

3.3. 初始化并启动Timer

始化定时器对象,注册定时器回调处理函数,设置定时时间(ms),循环定时触发时间:

/* USER CODE BEGIN 2 */printf("multi timer test...
");
//重复计时,周期为1000次,即1000ms=1stimer_init(&timer1, timer1_callback, 1000, 1000);timer_start(&timer1);
//单次计时,周期为50次,即50mstimer_init(&timer2, timer2_callback, 50, 0);timer_start(&timer2);
/* USER CODE END 2 */

3.4. Timer对象处理

在循环中调用Timer对象处理函数,处理函数会判断链表上的每个定时器是否超时,如果超过,则拉起注册的回调函数:

/* Infinite loop *//* USER CODE BEGIN WHILE */while (1){  /* USER CODE END WHILE */
  /* USER CODE BEGIN 3 */  timer_loop();} /* USER CODE END 3 */

3.5. 提供Timer时基信号

MultiTimer中所有的定时器都是通过一个32位的计数值_timer_ticks来判断的,所以需要一个硬件定时器提供时基信号,递增该值。

本文中使用的是STM32HAL库,所以通过Systick来提供,无需设置额外的定时器。

main.c文件的最后编写Systick回调函数:

/* USER CODE BEGIN 4 */void HAL_SYSTICK_Callback(void){    //给multitimer提供时基信号    timer_ticks(); //1ms ticks}
/* USER CODE END 4 */

然后在stm32l4xx_it.c中调用该回调函数:

/**  * @brief This function handles System tick timer.  */void SysTick_Handler(void){  /* USER CODE BEGIN SysTick_IRQn 0 */  HAL_SYSTICK_IRQHandler();
  /* USER CODE END SysTick_IRQn 0 */  HAL_IncTick();  /* USER CODE BEGIN SysTick_IRQn 1 */
  /* USER CODE END SysTick_IRQn 1 */}

接下来编译下载,看在串口助手中看到打印的日志:b416dbb8-4441-11ec-b939-dac502259ad0.png

4. MultiTimer设计思想解读

4.1. 软件定时器设计思想

MultiTimer的设计比较简洁。

设置一个计数值_timer_ticks不断递增,由定时器提供的中断驱动,只计次数,不计时间,有了很大的自由度,一般时基信号设置为1ms一次:

/**  * @brief  background ticks, timer repeat invoking interval 1ms.  * @param  None.  * @retval None.  */void timer_ticks(){  _timer_ticks++;}

在程序运行时循环比较定时器设置的超时值是否大于当前_timer_ticks的计数值,如果是则再次判断是否重复计数值是否为0,是则停止定时器,完成单次计时效果,否则修改计数值,最后拉起注册到该定时器的回调函数执行:

/**  * @brief  main loop.  * @param  None.  * @retval None  */void timer_loop(){  struct Timer* target;  for(target=head_handle; target; target=target->next) {    if(_timer_ticks >= target->timeout) {      if(target->repeat == 0) {        timer_stop(target);      } else {        target->timeout = _timer_ticks + target->repeat;      }      target->timeout_cb();    }  }}

4.2. 单链表操作

MultiTimer的代码少,非常适合拿来学习单链表的操作,学习数据结构的过程是乏味的,不如直接来个实例看看是如何操作的。

① 链表的节点设计为一个软件定时器,所以理论上支持的定时器数量只受内存限制。

typedef struct Timer {    uint32_t timeout;    uint32_t repeat;    void (*timeout_cb)(void);    struct Timer* next;}Timer;

定时器初始化函数timer_init就是初始化一个链表节点:

void timer_init(struct Timer* handle, void(*timeout_cb)(), uint32_t timeout, uint32_t repeat){  // memset(handle, sizeof(struct Timer), 0);  handle->timeout_cb = timeout_cb;  handle->timeout = _timer_ticks + timeout;  handle->repeat = repeat;}

② 设置链表头指针,只需知道头指针就能完成对整个单链表的操作:

//timer handle list head.static struct Timer* head_handle = NULL;

③ 向单链表增加一个节点

向单链表增加一个节点有三种方式:

  • 在单链表尾部增加一个节点
  • 在单链表头部增加一个节点
  • 在单链表中间增加一个节点

MultiTimer中所有的结点都是定时器,每个定时器之间相互独立,不存在先后次序关系,所以无论加到中间,还是加到尾部,还是加到头部,最后的功能都是一样的,但是在插入算法上有优劣性能之分。

先来看看再单链表尾部增加一个节点的算法:b4a1d22c-4441-11ec-b939-dac502259ad0.gif( 我会动哦 )

int timer_start(struct Timer* handle){  /**    * 算法1 —— 向单链表尾部添加节点   * 时间复杂度O(n)   * Mculover666   */  struct Timer* target = head_handle;  if(head_handle == NULL)  {    /* 链表为空 */    head_handle = handle;    handle->next = NULL;  }  else  {    /* 链表中存在节点,遍历找最后一个节点 */    while(target->next != NULL)    {      if(target == handle)        return -1;      target = target->next;    }    target->next = handle;    handle->next = NULL;  }
  return 0;}

这种算法理解简单,实现简单,但是算法时间复杂度秒变为O(n),当n很大时,插入一个节点的时间就会非常久。

再来看看在链表头部插入一个新节点的情况:

(我会动哦)

int timer_start(struct Timer* handle){  /**    * 算法2 —— 向单链表头部添加节点   * 时间复杂度O(n),如果去掉判断重复,则时间复杂度O(1)   * 0x1abin   */   struct Timer *target = head_handle;
   //判断是否有重复的定时器   while(target)   {    if(target == handle)    {      return -1;    }    target = target->next;   }   handle->next = head_handle;   head_handle = handle;   return 0;}

这里第二种头部插入节点的算法时间复杂度依然是O(n),emmm?

其实,这里因为单链表节点是定时器,在插入的时候需要对整个链表进行判断,避免重复添加同样的定时器节点,所以无论任何一种算法,都需要对单链表进行遍历。

如果在不需要判断重复的情况下,尾部插入算法仍然需要遍历,但是头部插入算法只需要插入就可以,时间复杂度为O(1),算法更优

④ 单链表删除其中一个节点

删除单链表的节点时,因为节点自身只保存有下一个节点的指针,并没有指向上一个节点的指针,所以不能直接入手删除节点,那么如何删除单链表的节点呢?

方法是:设置二级指针(指向Timer类型指针的指针),通过遍历链表的方式来寻找节点中next指针指向删除节点的那个节点,代码如下。

void timer_stop(struct Timer* handle){  struct Timer** curr;  for(curr = &head_handle; *curr; ) {    struct Timer* entry = *curr;    if (entry == handle) {      *curr = entry->next;//      free(entry);    } else      curr = &entry->next;  }}

责任编辑:haq
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 软件
    +关注

    关注

    69

    文章

    4921

    浏览量

    87381
  • 定时器
    +关注

    关注

    23

    文章

    3246

    浏览量

    114712

原文标题:MultiTimer,一款可无限扩展的软件定时器

文章出处:【微信号:strongerHuang,微信公众号:strongerHuang】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    定时器的基本组成和工作模式

    定时器是计算机或电子设备中常见的个硬件或软件组件,其主要功能是测量和控制时间的流逝。它在各种应用中起着至关重要的作用,如操作系统调度、多媒体播放、网络通信、工业自动化控制以及家电设备的定时
    的头像 发表于 08-19 18:28 1202次阅读

    定时器的工作方式介绍

    定时器是计算机和嵌入式系统中常见的种硬件模块,用于实现定时和计数功能。定时器的工作方式通常由组寄存
    的头像 发表于 07-12 10:29 891次阅读

    定时器相关的寄存有哪些类型

    在微控制编程中,定时器种非常常见的功能模块,用于实现各种定时和计数功能。定时器的工作原理是通过内部的计数
    的头像 发表于 07-12 10:25 901次阅读

    鸿蒙开发系统基础能力:Timer定时器

    设置定时器,该定时器定时器到期后执行个函数。
    的头像 发表于 06-28 11:33 984次阅读
    鸿蒙开发系统基础能力:Timer<b class='flag-5'>定时器</b>

    长持续时间定时器电路图 时间定时器的工作原理和功能

    时间定时器种用于计时和调度任务的工具。它允许我们在特定的时间间隔内执行某个任务,或者在特定的时间点执行某个操作。定时器在计算机系统中的应用非常广泛,从操作系统的任务调度、网络传输的控制到实时系统
    的头像 发表于 06-24 17:34 1798次阅读
    长持续时间<b class='flag-5'>定时器</b>电路图 时间<b class='flag-5'>定时器</b>的工作原理和功能

    如何实现软件定时器

    在Linux,uC/OS,FreeRTOS等操作系统中,都带有软件定时器,原理大同小异。典型的实现方法是:通过个硬件定时器产生固定的时钟节拍,每次硬件
    的头像 发表于 04-29 11:00 630次阅读

    ​PLC定时器介绍

    定时器是PLC中重要的编程元件,是累计时间增量的内部器件。大部分自动控制领域都需要定时器进行延时控制,灵活地使用定时器可以编制出复杂的控制程序。
    发表于 03-22 12:36 2328次阅读
    ​PLC<b class='flag-5'>定时器</b>介绍

    使用555定时器的可调双定时器电路

    定时器 IC 555 是最通用和最常用的 IC 之,因为它的应用范围更广,如 PWM放大器、延迟定时器、开关电路、占空比选择、时钟脉冲发生
    的头像 发表于 02-25 15:16 2170次阅读
    使用555<b class='flag-5'>定时器</b>的可调双<b class='flag-5'>定时器</b>电路

    定时器原理能控制马达吗为什么

    定时器原理可以用于控制马达。马达是种将电能转换为机械能的设备,通常由电动机和传动装置组成。定时器种电子设备,用来生成和计时精确而稳定的时间信号。通过将
    的头像 发表于 01-23 15:21 661次阅读

    555定时器可以构成哪三种电路 555定时器属于时序逻辑电路吗

    555定时器一款广泛应用于各种电子设备中的集成电路,它能够创建不同的电路以满足多种定时和脉冲生成需求。在本文中,我将详细介绍555定时器能够构成的三种常见电路,并回答其是否属于时序逻
    的头像 发表于 01-22 10:21 2945次阅读

    555定时器的基本功能 555定时器的工作原理及其应用

    555定时器种非常常见和常用的集成电路,它具有广泛的应用领域,例如计时、频率分频、脉冲宽度调制等。本文将详细介绍555定时器的基本功能、工作原理以及应用。 、555
    的头像 发表于 01-18 11:12 1.5w次阅读

    AWTK 开源串口屏开发(6) - 定时器的用法

    定时器是个常用的功能,AWTK串口屏提供了丰富的定时器函数,用于定时器的启动、停止、暂停、恢复、修改和重置等功能,本文以计时的例子来介绍定时器
    的头像 发表于 01-13 08:24 565次阅读
    AWTK 开源串口屏开发(6) - <b class='flag-5'>定时器</b>的用法

    AT32 定时器配置中pr和div的作用

    AT32定时器是51系列单片机中的定时器,可以实现多种定时功能。在AT32定时器中,pr和div是两个相关的参数,用于配置
    的头像 发表于 01-08 10:12 1289次阅读

    单片机定时器的用法

    本章以CW32通用定时器为例介绍单片机定时器的用法。
    的头像 发表于 01-04 10:37 1385次阅读
    单片机<b class='flag-5'>定时器</b>的用法

    51单片机定时器定时1秒程序流水灯结果分析

    51单片机是种广泛应用的嵌入式微控制,具有高性能、低功耗、易扩展等优势。在实际应用中,定时器常用于定时操作,如控制程序运行时间、生成精确
    的头像 发表于 12-26 14:57 7142次阅读