0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

跨入光子时代?曦智科技发布光子计算处理器,运行特定算法性能超3080百倍!

Hobby观察 来源:电子发烧友网 作者:梁浩斌 2021-12-23 09:57 次阅读
电子发烧友网报道(文/梁浩斌)随着纳米制程的不断往前推进,延续近50年的摩尔定律已经日渐式微。AI5G物联网等新兴领域的蓬勃发展带动了全球数据的爆炸式增长,对算力的需求增速远高于摩尔定律所预测的算力供给增速,传统的电子芯片只能通过增大面积与功耗来完成更多的计算,已逐渐无法满足日益增长的数据处理与节能要求。

在探索超越摩尔定律的路上,先进制程已经开始发挥作用,与此同时,由于具备高通量、低延时、低功耗的特性,用光代替电解决部分计算的也是突破现有瓶颈的途径之一。而此前一直只存在于实验室的光子芯片,最近有了新的进展。

近日,曦智科技(Lightelligence)发布了其最新高性能光子计算处理器——PACE(Photonic Arithmetic Computing Engine,光子计算引擎)。
6b8f16f35489cf790111619bb8ff3e1cc04d7a8d
曦智科技创始人兼首席执行官沈亦晨博士表示:“PACE的发布具有里程碑式的意义:它成功验证了光子计算的优越性,为集成电路产业提供了新的发展路径。”

曦智科技成立于2017年,成立4年以来,公司总融资额已经超过10亿人民币,在波士顿、上海、杭州、南京等地均设立了办公室及实验室,全球员工接近200人,中国员工超过100人。核心研发团队来自麻省理工学院,70%的芯片设计师拥有十年以上半导体从业经验。

2017年,沈亦晨博士以第一作者和通讯作者的身份在《自然-光子》杂志发表封面论文,开创性地提出了光子人工智能计算的新路径。也正是由于这篇论文,在后来吸引了十多家初创公司相继建立。

2019年4月,曦智科技推出了全球首款光子芯片原型板卡,成功将当时占据半个实验室的整个光子计算系统集成到了常规大小的板卡上,验证了以光子替代电子进行高性能计算的开创性想法。当时的原型板卡上集成了100个光子器件,运行系统时钟仅有100kHz。

两年后的今天,这次发布的PACE已经集成了10000个光子器件,运行系统时钟更是达到了1GHz。跨越几个数量级的性能提升,他们是如何做到的?

电子芯片现存的三大瓶颈

自2012年以来,神经网络和计算模型的大小就开始爆炸性增长,平均每3到4个月,计算模型的大小就会翻一倍。但持续增长的模型,明显受到算力底层的限制,制约了人工智能的进一步发展。

沈亦晨博士认为,目前电子芯片的发展遇到了三个主要瓶颈:算力、数据传输和存储。其中,算力瓶颈主要来源于随着制程工艺接近物理极限导致的摩尔定律失效,以及功耗和发热问题。

随着晶体管尺寸越来越小,晶体管上的电子隧穿现象也愈发严重,因此即使将晶体管做得更小,单个晶体管在进行运算时的功耗也无法进一步降低。在这样的前提下,业界有两种解决路径,单芯片面积增加或多芯片互联。

但随着面积增大,需要更长的铜导线进行数据传输,而铜导线的发热量和损耗与长度成正比,即芯片面积越大,发热越大、功耗越高。

同样,多芯片互联同样存在一些问题。首先片间互联带宽有限,即互联效率低,其次铜导线依然会造成系统功耗提高,比如通过电将100个芯片或板卡互联后,算力可能只比单个板卡提高10倍左右。

因此,沈亦晨博士认为,光是最适合解决这些困境的底层技术方式。“首先,在数据搬运上面,光已在光通信领域充分证明其领先性和优势了。目前所有的长距离通信,包括数据中心里服务器和服务器之间的数据都是通过光纤代替铜导线进行的。我们也认为,光进入到芯片去帮助运算是一个必然的方向。”

曦智光子计算的三个主要技术

前面说到光是解决目前电子芯片算力、数据传输和存储三大瓶颈的底层技术方式。而从大数据、人工智能等应用角度去看,越来越多的算力需求是来自于线性运算,而曦智发明的用光高效做线性计算的方式,就是光芯片的重要优势之一。

曦智将其技术分为三个部分:oMAC(通过光来做矩阵的乘积累加运算)、oNOC(片上光网络)、片间的光网络。据沈亦晨博士介绍,oMAC是一种模拟计算,通过光模拟信号代替传统电子进行数据处理,数据可以加载在光的强度或者相位上面,通过在波导里的传播相互干涉,同时进行运算。主要实现的方法是采用和现在电芯片制备工艺CMOS兼容的硅光工艺平台,用光电协同设计来进行光的矩阵乘法。

这里的优势是,首先,光的矩阵乘法并行能力更强,它能以更高的通量进行运算。同时,它的能效可以媲美甚至优于现在的电子芯片,因为光在做传播的时候本身不会发热。另外,它完成一个矩阵运算所要花的时间少,也就是延时远远低于电芯片的延时。最后,硅光的工艺对于工艺制程的要求相当低,比如65或者45纳米的CMOS工艺线就可以满足现在光芯片、光计算所有的要求。硅光未来技术迭代不会需要对制程有特别的要求,更多是从其他方面进行技术迭代,比如主频、波长数量还有不同的模式。

而oNOC也就是片上光网络,主要通过用波导代替铜导线的方式,在片上进行数据传输,包括实现片与片之间的光通信。还有比较大芯片上光的总线的通信,在光芯片上构建一个固定通信网络拓扑,通过光相连,实现基于片上光网络的数据交互。最后,采用一些波分复用的方式来传播数据,优势是带宽更大,能耗更低,延时会远远优于铜导线,并且对距离不敏感。

最后的片间光网络即将上述片上光网络进一步拓展到多个板卡、更多服务器之间。通过光纤将芯片和芯片直接互联起来,芯片之间数据通过光来传输。

全球唯一展示光子优势,PACE超3080百倍!

曦智认为,光电混合计算最重要的技术演进的点,就是不断增加单个光芯片上的器件集成度。实际上,从最早的4x4乘法器,到64x64乘法器,再到目前光电混合2.5D封装,曦智在四年时间里,已经实现一万个光器件集成在一块芯片上。

也正因为集成度上的突破,PACE是曦智科技目前可以对外展示最新的可运作的计算处理器,是目前已知全球集成度最高的光子芯片,同时也是全球第一个展示出光子优势的计算系统,能够在一些有商业化应用前景的算法上,比目前电子芯片提高数量级的优势。

那么光子计算的优势在什么领域能体现出来?NP-Complete Problem(多项式复杂程度非确定性问题,NPC)可以说是目前全球最难以高效解决的数学问题,比如生物信息里蛋白质结构的预测、物流交通调度、芯片设计、材料研发等都会应用到。但目前NPC没有多项式算法,只能用穷举法逐个检验最终得到答案。但如果我们能够有效解决其中一个问题,它也可以被映射到其他问题上去。

而由于光子芯片的特性,PACE可以通过重复矩阵乘法和巧妙利用受控噪声组成的紧密回环来实现低延迟,于是在进行NPC问题的计算时,PACE就可以相比GPU快上百倍。所以,PCAE在解决NPC问题上有比较多的商业应用前景。

据了解,与英伟达RTX3080 GPU相比,在同时运行一样的循环神经网络算法时,PACE所需时间只有3080的1%不到。

采用光电混合结构,基于现有生态打造

实际上,PACE的结构由光芯片和电芯片这两部分组成。电芯片上主要做数据的存储,以及数模混合的调度,光芯片上主要做数据的计算。这里可以理解为光芯片只是一个底层的硬件支持,而信息转换和软件相关的都采用电芯片进行数字处理,所有指令、编译、软件,都会在数字电芯片上。所以与现有的数字芯片生态一样,只是在底层计算端换成了光芯片。

作为光电混合的设计的芯片,可能有人会担心在工艺上难以大规模量产。实际上,沈亦晨表示,硅光芯片采用的是CMOS工艺,这一点能解决90%最核心的问题。由于基本采用硅基的CMOS工艺,在电学、热学,包括仿真上都有相当成熟的软件可以直接使用。
60d122d893c2e46f57e79739cfc43339958667f7
而封装层面,PACE上采用了芯片堆叠,也就是类似于HBM的2.5D、3D封装方案。目前唯一不同的是,封装方案上需要增加一个接口,将光源导入光芯片中。

光芯片商业化还有多远?

在谈到这项技术的商业前景时,沈亦晨博士向记者强调,光计算并不是只有光芯片,在可预见的未来里,都将会是和电子芯片深度结合的光电混合计算。光芯片相比于电芯片,它更多是承接主要任务的处理器,主要承接的是线性计算和数据网络这两个部分。但由电芯片发出指令的一个好处是它和目前现有的市场环境、软件环境都是兼容的。

另外要注意的是,目前曦智的光电混合芯片,还不能用于消费者熟知的领域,比如PC、手机、编解码芯片等,同时这也不是曦智科技考虑的范畴。而曦智科技在应用场景的选择上,会先切入大数据,包括云计算智能驾驶、金融上的量化交易、生物药物研发等场景。

沈亦晨表示,作为一项颠覆性的技术,本身一定需要经历漫长的商业化过程。他透露,在第一阶段也就是2022年开始的一到三年内,对于算力、延时等痛点特别强的应用场景开始落地,包括金融、大模型云服务、非AI的方向的优化、高性能运算等。

而第二个阶段会随着产品落地,在不同应用场景体现光计算优势后,将会投入更大规模团队做人工智能训练的市场。

第三阶段曦智将会延伸到GPU,包括车载芯片等市场。

“这些都是我们觉得对于算力需求非常大的,但是需要一个更成熟的硬件、软件体系和进一步切入的市场。”因此沈亦晨认为,技术商业化会是一个相当漫长的过程,需要不断地去改变、尝试不同应用场景和行业。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 光子计算
    +关注

    关注

    0

    文章

    14

    浏览量

    3082
收藏 人收藏

    评论

    相关推荐

    智科技将携光子计算产品亮相2024高博会

    ,旨在加速推进高等教育现代化的进程。在这场汇聚学术与技术交流的盛会中,全球领先的光电混合算力提供商——智科技,将携其光子计算产品系列首次亮相高博会。
    的头像 发表于 11-14 13:41 296次阅读

    什么是光子学?

    包括发射、传输、偏转和放大等过程。 光子学的应用非常广泛,从能源生产和检测到电信和信息处理,无所不包。它对通信、医疗保健、导航和天文学等各个领域产生了重大影响,成为现代技术和科学认识的重要组成部分。 二、历史背景
    的头像 发表于 10-29 06:21 129次阅读

    AI4Science黑客松光子计算挑战赛成功举办

    经过数月角逐,第二届AI4Science黑客松竞赛日前落下帷幕。在智科技主持的光子计算挑战赛中,参赛选手何自强和来自东北大学的参赛队伍The Power of Light获得完赛优胜奖。
    的头像 发表于 08-07 09:58 471次阅读

    opa380异常损坏,放大倍数衰减十到百倍,不可恢复,为什么?

    在使用opa380时,经常出现原先正常工作的电路,突然信号值直线下降,输出信号衰减十到百倍,但是变化趋势一致,不可恢复,更换opa380芯片后正常
    发表于 07-29 06:51

    光通信时代的引领者:光子晶体光纤

    摘要光子晶体光纤(photoniccrystalfiber,简称PCF),又被称为多孔或微结构光纤。光子晶体光纤是一种新型光纤结构,利用光子晶体的周期性结构来控制和引导光信号的传输。光子
    的头像 发表于 07-26 08:16 1461次阅读
    光通信<b class='flag-5'>时代</b>的引领者:<b class='flag-5'>光子</b>晶体光纤

    西安光机所在表面非线性光子学领域获得新进展

    研究成果发表于国际著名期刊Materials Today Nano(IF=10.3),论文第一作者为2020级博士生石文娟。 全光信号处理、全光计算和量子芯片等领域的快速发展对非线性光子器件的集成度、调制速度、功耗等
    的头像 发表于 04-25 06:34 409次阅读
    西安光机所在<b class='flag-5'>超</b>表面非线性<b class='flag-5'>光子</b>学领域获得新进展

    什么是单光子探测

      单光子探测(SPD)是一种超低噪声器件,增强的灵敏度使其能够探测到光的小能量量子——光子。单光子探测可以对单个
    的头像 发表于 03-29 06:34 647次阅读

    基于薄膜铌酸锂的高性能集成光子学研究

    3月25日,Marko Lončar 博士出席光库科技与 HyperLight 联合主办的“薄膜铌酸锂光子学技术与应用”论坛,并发表了题为“基于薄膜铌酸锂的高性能集成光子学”的演讲。
    的头像 发表于 03-27 17:18 849次阅读
    基于薄膜铌酸锂的高<b class='flag-5'>性能</b>集成<b class='flag-5'>光子</b>学研究

    光子集成芯片和光子集成技术的区别

    光子集成芯片和光子集成技术虽然紧密相关,但它们在定义和应用上存在一些区别。
    的头像 发表于 03-25 14:45 745次阅读

    光子集成芯片和光子集成技术是什么

    光子集成芯片和光子集成技术是光子学领域的重要概念,它们代表了光子在集成电路领域的应用和发展。
    的头像 发表于 03-25 14:17 971次阅读

    光子集成芯片是什么

    光子集成芯片,也称为光子芯片或光子集成电路,是一种将光子器件小型化并集成在特殊衬底材料上的技术。这些特殊的光子器件,如光栅、耦合
    的头像 发表于 03-22 16:51 1107次阅读

    简单认识微波光子集成芯片和硅基光子集成芯片

    微波光子集成芯片是一种新型的集成光电子器件,它将微波信号和光信号在同一芯片上进行处理和传输。这种芯片的基本原理是利用光子器件和微波器件的相互作用来实现信号的传输和处理
    的头像 发表于 03-20 16:11 832次阅读

    简仪科技紫外光子成像技术应用

    在面对紫外光子成像技术时,面临着诸多挑战。光子密度大、需要高频触发采集,以及实时计算光子位置进行谱图绘制,这些都对采集设备的性能提出了极高的
    的头像 发表于 03-20 09:56 527次阅读
    简仪科技紫外<b class='flag-5'>光子</b>成像技术应用

    光子探测改写量子计算规则

    两位科学家通过特殊的实验装置表明,带有超导单光子探测的零差探测对输入光子通量具有线性响应。换句话说,这意味着测量的信号与输入信号成正比。
    的头像 发表于 02-27 13:57 513次阅读

    可以计算光最佳形状的光子芯片?

    就在最近,一个由多个大学的研究人员组成的国际团队突破了这一难题,让光学无线系统的数据传输不再有障碍,该研究团队制造出的新型光子芯片可计算出光的最佳形状,从而让光以最佳的效率穿过任何环境,相关研究成果发表在《自然-光子学》杂志上。
    的头像 发表于 12-06 16:03 656次阅读