情感计算这一概念提出来时不少人对其嗤之以鼻,不少人认为量化情感是一件可笑的事,也有人认为这是推动人工智能进入下一阶段不可或缺的技术。但不论怎么说,这一技术目前并没有普及开来,因为与它相关的应用需要的不仅仅是AI与深度学习,还涉及到了太多其他传感器和心理学的范畴。话虽如此,我们还是陆续看到了情感计算在一些应用中的悄然兴起。
懂情感的机器人
情感计算最贴近我们生活的一项应用自然就是机器人了,目前市面上已经出现了不少基于该技术的服务机器人、陪伴机器人和教育机器人,比如日本软银集团和法国Aldebaran Robotics开发的Pepper。这些机器人的目的除了完成重复性的服务外,也能缓解人们的孤独症或认知障碍等一系列缺陷。且如今仍有不少人被疫情困于家中,这类机器人尤其是陪伴机器人似乎又再度找到了市场。
Pepper 机器人 / 软银
那么这种陪伴机器人用于情感计算的数据从哪来呢?答案就是机器人配备的传感器。这里的传感器并非雷达等用于机器人移动的传感器,而是麦克风、摄像头和手势传感器这类感知人类的传感器。
人的说话速度、音调和响度等参数都暗含了当前的情绪波动,通过深度学习创造出的模型,机器人可以利用本地或云端计算平台来获取使用者当前的情绪,而这与我们寻常使用的语音命令识别又是另一套完全不同的识别体系。
摄像头带来的面部识别则通过人的表情来完成情感计算的过程,这些表情不仅包含了大喜大悲这类的明显面部特征,还会根据一些微表情来完成辅助判断。一般的面部识别只会获取一些关键的参数,且往往用于解锁等安全功能。
智能穿戴,情感计算的另一个入口
除了机器人以外,情感计算也在慢慢进入另一大市场,那就是智能穿戴。除了以机器视觉、语音识别为主的情感计算以外,另一种获取人类情绪的方式就是通过ECG、EDA、EEG和HRV等生物信号,通过测量这些信号的持续时间,进行特征提取,再通过统计分析和机器学习算法,最终得出使用者当前的情感状态。而当下最方便收集这些数据的自然非智能穿戴设备莫属了。
基于ECG和EDA信号的情感计算 / Brainlab
从去年开始,一众智能手表都添加了ECG心电检测功能,Fitbit Sense更是集成了EDA皮电传感器。当然了目前在情感计算尚不成熟的情况下,针对这些功能开发的应用主要以健身为主。但无可厚非的是,智能穿戴设备上的传感器很可能成为未来情感计算中一个关键的入口,而IoT互联技术将作为它的扩散网络。
比如智能穿戴设备识别出忧郁的情绪后,随机播放音乐的关联应用会自动在智能音箱等设备中播放振奋的音乐,或是智能灯具自动将光色调节至正面色彩。不过ECG和EDA这类生物信号目前主要在激动、疲惫和压力等情感判断上更为准确,而在喜怒哀乐等具体情绪识别还是落后于面部识别,所以当前还是更适合用于医疗类的智能穿戴设备,作为一项辅助监测功能。
小结
其实情感计算的产品应用形态远不止于此,目前已经有不少AI虚拟助手融合了简单的情感计算,这些虚拟机器人往往利用的是文本或语音的语义分析来判断情感,从而完成一些电子客服之类的工作。
从这些潜在的情感计算应用来看,情感计算似乎大多都离不开与感知紧密相关的传感器,但目前也有一些研究在探索非侵入式传感器的情感计算。这类情感计算通过现有的一些设备来判断人的情绪,比如人移动鼠标的速度、敲击键盘的频率等,但这类研究的成熟度更低,与以上传感器方案相比,准确度均要低上不少。
总的来说情感计算目前进展还在初期,要想真正感知到人的情感还需要更多的数据输入,也需要厂商进行一系列定制化的传感器设计。
懂情感的机器人
情感计算最贴近我们生活的一项应用自然就是机器人了,目前市面上已经出现了不少基于该技术的服务机器人、陪伴机器人和教育机器人,比如日本软银集团和法国Aldebaran Robotics开发的Pepper。这些机器人的目的除了完成重复性的服务外,也能缓解人们的孤独症或认知障碍等一系列缺陷。且如今仍有不少人被疫情困于家中,这类机器人尤其是陪伴机器人似乎又再度找到了市场。
Pepper 机器人 / 软银
人的说话速度、音调和响度等参数都暗含了当前的情绪波动,通过深度学习创造出的模型,机器人可以利用本地或云端计算平台来获取使用者当前的情绪,而这与我们寻常使用的语音命令识别又是另一套完全不同的识别体系。
摄像头带来的面部识别则通过人的表情来完成情感计算的过程,这些表情不仅包含了大喜大悲这类的明显面部特征,还会根据一些微表情来完成辅助判断。一般的面部识别只会获取一些关键的参数,且往往用于解锁等安全功能。
智能穿戴,情感计算的另一个入口
除了机器人以外,情感计算也在慢慢进入另一大市场,那就是智能穿戴。除了以机器视觉、语音识别为主的情感计算以外,另一种获取人类情绪的方式就是通过ECG、EDA、EEG和HRV等生物信号,通过测量这些信号的持续时间,进行特征提取,再通过统计分析和机器学习算法,最终得出使用者当前的情感状态。而当下最方便收集这些数据的自然非智能穿戴设备莫属了。
基于ECG和EDA信号的情感计算 / Brainlab
从去年开始,一众智能手表都添加了ECG心电检测功能,Fitbit Sense更是集成了EDA皮电传感器。当然了目前在情感计算尚不成熟的情况下,针对这些功能开发的应用主要以健身为主。但无可厚非的是,智能穿戴设备上的传感器很可能成为未来情感计算中一个关键的入口,而IoT互联技术将作为它的扩散网络。
比如智能穿戴设备识别出忧郁的情绪后,随机播放音乐的关联应用会自动在智能音箱等设备中播放振奋的音乐,或是智能灯具自动将光色调节至正面色彩。不过ECG和EDA这类生物信号目前主要在激动、疲惫和压力等情感判断上更为准确,而在喜怒哀乐等具体情绪识别还是落后于面部识别,所以当前还是更适合用于医疗类的智能穿戴设备,作为一项辅助监测功能。
小结
其实情感计算的产品应用形态远不止于此,目前已经有不少AI虚拟助手融合了简单的情感计算,这些虚拟机器人往往利用的是文本或语音的语义分析来判断情感,从而完成一些电子客服之类的工作。
从这些潜在的情感计算应用来看,情感计算似乎大多都离不开与感知紧密相关的传感器,但目前也有一些研究在探索非侵入式传感器的情感计算。这类情感计算通过现有的一些设备来判断人的情绪,比如人移动鼠标的速度、敲击键盘的频率等,但这类研究的成熟度更低,与以上传感器方案相比,准确度均要低上不少。
总的来说情感计算目前进展还在初期,要想真正感知到人的情感还需要更多的数据输入,也需要厂商进行一系列定制化的传感器设计。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。
举报投诉
-
机器人
+关注
关注
210文章
28180浏览量
206315 -
AI
+关注
关注
87文章
30072浏览量
268331
发布评论请先 登录
相关推荐
AI云端计算资源有哪些类型
AI云端计算资源涵盖了从基础设施到软件服务的多个层面,为AI模型的训练、推理和部署提供了强大的支持。下面,AI部落小编为您详细介绍AI云端
基于LSTM神经网络的情感分析方法
情感分析是自然语言处理(NLP)领域的一项重要任务,旨在识别和提取文本中的主观信息,如情感倾向、情感强度等。随着深度学习技术的发展,基于LSTM(长短期记忆)神经网络的情感分析方法因其
MotionAI大模型开源:数字人泛化技术对直播行业的深刻影响
长久以来,关于“先有鸡还是先有蛋”的哲学谜题困扰着人类,而今,在人工智能与算法领域,一个新的议题悄然兴起:“是算法进化了AI,还是AI进化了算法?”这一问题的探讨,随着温州专帮信息科技有限公司灰豚数字人团队发布的MotionAI
AI陪伴机器人市场需求快速增长,情感交互成重要布局方向
电子发烧友网报道(文/李弯弯)AI陪伴机器人是一种基于人工智能技术的智能机器人,它能够与人类进行交互,并提供陪伴和帮助。它们通过模拟人类的行为和思维过程,具备一定的智能和情感能力,能够理解人类的语言
什么是AI边缘计算,AI边缘计算的特点和优势介绍
随着人工智能的迅猛发展,AI边缘计算成为了热门话题。那么什么是AI边缘计算呢?简单来说,它是将人工智能技术引入边缘计算的新兴领域,旨在将
2024年,GPU还会维持天价吗?
云厂商作为AI算力需求的主要承载方,一场由GPU主导的变革正在悄然兴起,这场变革的突出表现在云厂商纷纷下场造芯,结合GPU的短缺、高昂成本、应对云服务更加智能化、自主化、灵活化和可扩展化的需求和广阔前景。
情感语音识别的挑战与未来趋势
一、引言 情感语音识别是一种通过分析和理解人类语音中的情感信息来实现智能交互的技术。尽管近年来取得了显著的进步,但情感语音识别仍然面临着诸多挑战。本文将探讨情感语音识别所面临的挑战以及
情感语音识别的应用与挑战
一、引言 情感语音识别是一种通过分析人类语音中的情感信息实现智能化和个性化人机交互的技术。本文将探讨情感语音识别的应用领域、优势以及所面临的挑战。 二、情感语音识别的应用领域 娱乐产业
情感语音识别:技术发展与挑战
一、引言 情感语音识别是人工智能领域的重要研究方向,它通过分析人类语音中的情感信息,实现人机之间的情感交互。本文将探讨情感语音识别技术的发展历程和面临的挑战。 二、
情感语音识别的现状与未来趋势
情感语音识别是一种涉及多个学科领域的前沿技术,包括心理学、语言学、计算机科学等。它通过分析人类语音中的情感信息,实现更加智能化和个性化的人机交互。本文将探讨情感语音识别的现状与未来趋势
情感语音识别:挑战与未来发展方向
一、引言 情感语音识别是人工智能领域中的一项重要技术,它通过分析人类语音中的情感信息,实现更加智能化和个性化的人机交互。然而,在实际应用中,情感语音识别技术面临着许多挑战。本文将探讨情感
情感语音识别:现状、挑战与解决方案
一、引言 情感语音识别是人工智能领域的前沿研究课题,它通过分析人类语音中的情感信息,实现更加智能化和个性化的人机交互。然而,在实际应用中,情感语音识别技术面临着许多挑战。本文将探讨情感
情感语音识别:现状、挑战与未来趋势
一、引言 情感语音识别是近年来人工智能领域的研究热点,它通过分析人类语音中的情感信息,实现更加智能化和个性化的人机交互。然而,在实际应用中,情感语音识别技术仍面临着许多挑战。本文将探讨情感
评论