0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

GaN电源系统性能升级的奥秘

贸泽电子 来源:贸泽电子 作者:贸泽电子 2022-02-25 10:12 次阅读

如今,以GaN和SiC为代表的第三代半导体技术风头正劲。与传统的半导体材料相比,GaN和SiC禁带宽度大、击穿电场强度高、电子迁移率高、热导电率大、介电常数小、抗辐射能力强……因此可实现更高的功率密度、更高的电压驱动能力、更快的开关频率、更高的效率、更佳的热性能、更小的尺寸,在高温、高频、高功率、高辐射等功率电子应用领域,不断在向传统的硅基IGBTMOSFET器件发起强劲的冲击。

在这个第三代半导体技术的热潮之中,GaN相较于SiC,表现出了更高的成长性。根据Yole Development公司的预测,全球GaN功率器件市场规模将从2020年的4,600万美元,快速攀升至2026年的11亿美元,平均年复合成长率高达70%!

之所以会获得如此高的加速度,从2020年起GaN器件向智能手机快速充电器市场的成功渗透,功不可没。不过除此之外,GaN器件自身那些颇“招人喜欢”的特质,才是更根本的原因。

GaN的优势

由于特性的不同,GaN和SiC在功率电子领域有着明显的应用市场区隔:SiC器件可以提供高达1,200V的电压等级,并具有高载流能力,因此在汽车和机车牵引逆变器、高功率太阳能发电站和大型三相电网转换器等应用上优势明显;而GaN器件的电压等级通常为600V左右,但具有更高的开关品质、支持更高的开关频率,可谓是10kW以下应用的理想之选,因此应用领域广泛,涵盖消费电子通信工业交直流电源、电动汽车车载充电器、电源适配器、伺服驱动功率级等产品

在10kW以下的市场,尽管SiC器件也有所涉猎,但是相较而言GaN在以下三个方面的优势更为突出。

首先,GaN FET采用的横向结构内没有PN结,因此也就没有体二极管和与其相关的反向恢复过程;而SiC FET中存在体二极管,开关时需要一个反向恢复过程,这就会带来额外的反向恢复损耗和时间,影响开关的功耗和速度。换言之,在10kW以下的应用中,GaN具有更出色的开关品质,可在更高开关频率下工作,这也使得采用更小体积的外围元件成为可能。

GaN电源系统性能升级的奥秘

图1:不同功率电子器件的应用领域

(图源:TI)

其次,SiC器件需要采用更为昂贵的衬底材料以及专用的制造工艺,这会提高其应用的总体成本;而GaN器件可基于标准的Si衬底制成,其后继的降本空间更大。综合评估,GaN在总体拥有成本上,随着时间的推移会更具优势。

GaN电源系统性能升级的奥秘

图2:不同FET技术的成本变化趋势

(图源:TI)

再有,由于GaN器件的制造工艺与传统的Si半导体工艺兼容性强,这就使得在同一器件封装中可以做更多的文章,比如‍‍‍‍‍‍‍‍‍‍‍将驱动器和GaN FET集成在一起,以及增加其他更多功能,这无疑会对提升系统性能、优化设计、降低系统成本大有裨益。

集成驱动器

传统GaN器件应用系统都是采用分立的GaN FET和驱动器IC组合而成的,这是因为GaN FET和驱动器是采用不同工艺技术制造的,有的时候还需要选用不同供应商的器件。但是这种分立的架构在面对高压摆率开关应用时,就会遇到挑战,原因是不同器件封装和器件之间互连的焊线和引线会带来寄生电感,而这些寄生电感会导致开关损耗、振铃和可靠性等多方面的问题。

想要消除这些由寄生电感带来的问题,一个行之有效的解决方案就是:将GaN FET和驱动器集成在一个封装内,以大地减少寄生电感。

图3对GaN FET和驱动器分立封装架构和单一封装的集方案进行了比较,后者对于整个系统会带来哪些性能方面的提升,我们下面会做进一步的分析。

GaN电源系统性能升级的奥秘

图3:GaN FET和驱动器分立架构(a)和集成封装(b)方案的比较(图源:TI)

共源电感

由于GaN FET的开关速率很高,这时共源电感这个寄生要素的影响就不得不考虑了。在图3a中,Lcs就是共源电感,在传统的TO-220分立封装中,GaN FET的源和由焊线流至引线,汲取电流和栅极电流都从这里流过。当包含焊线和封装引线的共源电感高于10nH时,就会限制压摆率,而较低的压摆率意味着更长的转换时间,进而导致更高的交叉传导损耗,增加总的开关损耗。

而如果采用图3b中的集成式封装,驱动器的接地直接焊接至GaN FET裸片的源极焊垫,大幅度地缩短了电源环路与栅极环路公用的共源电感路径,使得GaN器件能够以更高的电流压摆率进行开关,降低开关损耗。

栅极环路电感

栅极环路电感包括栅极电感和驱动器接地电感,其对开关性能影响巨大。在GaN FET关闭时,栅极被一个电阻器下拉,这个电阻器阻值要足够低,才不会在开关期间由于漏极被拉高而重新接通。这个电阻器与GaN器件的栅极电容和栅极环路电感组成了一个L-R-C槽路,当栅极环路电感值较大时,其品质因数Q会增加,产生更高的振铃,从而显著增加GaN FET栅极的应力——要知道,FET栅极上的过应力会对可靠性产生不良影响。

栅极环路电感还会影响到关断保持能力。当低管器件的栅极保持在关闭电压而高管导通时,低管漏极电容将一个大电流传送至栅极的保持环路中,这个电流会通过栅极环路电感将栅极VGS推上去,从而增加直通电流,而直通电流的提升会导致交叉传导能量损耗的增加。而且你会发现,当栅极环路电感较高时,减少栅极应力和增强器件关断保持,两者是很难兼得的。

GaN FET+驱动器的集成式封装显然是减少栅极环路电感的好办法。从图3中可以看出,分立架构中(图3a),栅极电感包括驱动器输出焊线Ldrv_out、GaN栅极焊线Lg_gan和PCB迹线Lg_pcb,电感值通常从几nH到10nH以上;而如果是集成式封装(图3b),则可以将栅极电感控制在1nH以下,这就为系统性能整体的优化提供了保障。

保护功能支持

为了确保GaN FET安全可靠工作,保护功能必不可少。比如过温保护可以在感测到温度超过保护阈值时,将GaN FET关闭。当GaN FET和驱动器被集成在一个封装内时,由于引线框架具有良好的导热性,也就能够确保两者的温度比较接近,使得过热保护设计更简捷高效。

对GaN进行电流保护时,需要GaN器件与驱动器之间具有低电感连接,这是因为以较大压摆率进行快速开关动作时,互连线路中额外的电感会导致振铃,并需要较长的消隐时间来防止电流保护失效。而集成式封装方案正好可以减少互连电感,让电流保护电路在需要的时候尽可能快地做出反应。

归纳一下,当我们将GaN FET和驱动器集成在单一封装中之后,可以消除共源电感,实现高电流压摆率;也可以减少栅极环路电感,降低关闭过程中的栅极应力并提升器件的关断保持能力;同时,还有助于支持高效可靠的过热和过流过压等保护功能的实现,可谓是一举多得!

TI的GaN功率级

Texas Instruments(TI)的LMG341x系列GaN功率级器件,就是采用“GaN FET + 驱动器”这种集成化封装,而且在其中还整合了丰富的保护功能,可让开发者充分利用GaN器件的优势,实现更高功率密度和更高效率的功率电子应用设计。

以该系列产品中的LMG341xR150为例,与传统的硅MOSFET相比,其具有超低的输入和输出电容值,零反向恢复特性可将开关损耗降低80%,且实现了更低的EMI和开关节点振铃,这些优势使其可作为图腾柱PFC之类的高密度、高效率拓扑设计的理想解决方案。

GaN电源系统性能升级的奥秘

图4:LMG341xR150的系统框图

(图源:TI)

由于集成栅极驱动器,该器件实现了零共源电感,20ns的传播延迟确保其在MHz级频率下工作,在100V/ns开关条件下(用户可在25V/ns至100V/ns间调节压摆率)的Vds振铃几乎为零,因此LMG341xR150可以作为传统共源共栅GaN和分立GaN FET架构的替代产品,很大幅度地提高电源性能和可靠性,并大大简化设计。

GaN电源系统性能升级的奥秘

图5:LMG341xR150在100V/ns时的开关性能

(图源:TI)

LMG341xR150还提供了强大的保护功能,包括过流保护(响应时间低于100ns,压摆率抗扰性高于150V/ns)、瞬态过压抗扰度、过热保护,以及针对所有电源轨的UVLO保护,且可提供自监控功能,这就省去外部保护组件,有助于简化设计的复杂性,降低系统成本。

毋庸置疑。GaN技术的推广和应用,为功率电子产品的升级提供了巨大的推动力。不过,想让GaN的优势特性充分发挥出来,除了在GaN器件本身的“雕琢”上精益求精,也需要充分考虑到整个电源系统的影响因素。事实证明,将驱动器和GaN FET集成在一个封装中,就是从系统角度进行优化的一个行之有效的方案,可以在提升GaN电源系统性能的同时,也让整个设计过程更快捷!

如果你在用分立式的GaN器件搭建方案时遇到瓶颈,不妨去尝试一下LMG341xR150这种“GaN FET + 驱动器 + 保护功能”的集成式解决方案,一定会有不少“惊喜”等着你!

关于贸泽电子

贸泽电子(Mouser Electronics)是一家全球授权半导体和电子元器件授权分销商,服务全球广大电子设计群体。贸泽电子原厂授权分销近1,200家知名品牌,可订购数百万种在线产品,为客户提供一站式采购平台,欢迎关注我们,获取第一手的设计与产业资讯信息!

原文标题:集成驱动器!原来,GaN电源系统性能升级的奥秘在这里~

文章出处:【微信公众号:贸泽电子】欢迎添加关注!文章转载请注明出处。

审核编辑:汤梓红

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 半导体
    +关注

    关注

    334

    文章

    27349

    浏览量

    218500
  • 功率器件
    +关注

    关注

    41

    文章

    1766

    浏览量

    90432
  • GaN
    GaN
    +关注

    关注

    19

    文章

    1935

    浏览量

    73383

原文标题:集成驱动器!原来,GaN电源系统性能升级的奥秘在这里~

文章出处:【微信号:贸泽电子,微信公众号:贸泽电子】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    最新可用隔离元件的性能提升如何帮助替代架构在不影响安全性的前提下提升系统性能

    本文探讨了系统架构选择对电源和控制电路设计以及系统性能的影响。本文还将说明最新可用隔离元件的性能提升如何帮助替代架构在不影响安全性的前提下提升系统性
    的头像 发表于 10-13 06:12 7849次阅读
    最新可用隔离元件的<b class='flag-5'>性能</b>提升如何帮助替代架构在不影响安全性的前提下提升<b class='flag-5'>系统性能</b>

    ADC中的ABC:理解ADC误差对系统性能的影响

    ADC中的ABC:理解ADC误差对系统性能的影响
    发表于 10-29 14:29

    B4600A系统性能分析工具集

    B4600A系统性能分析工具集
    发表于 03-06 08:01

    如何影响FFX输出并最终影响系统性能

    嗨, 关于STA311B的一些快速问题。 XTI的时钟质量如何影响FFX输出并最终影响系统性能? 您是否有任何参考设计,图表或图表显示ADC的电源纠错的潜在好处。 IC可以用FD2233D
    发表于 07-25 07:36

    PNA校准电缆长度和VNA系统性能

    PNA校准 - 电缆长度和VNA系统性能
    发表于 09-19 06:10

    哪些方法可以改善PDN对电源系统性能

    配电网络 (PDN) 是所有电源系统的主干部分。随着系统电源需求的不断上升,传统 PDN 承受着提供足够性能的巨大压力。对于功耗和热管理而言
    发表于 10-28 06:51

    镜像对系统性能的影响有哪些?

    镜像抑制基础知识可减少AD9361和AD9371中正交不平衡的技术镜像的来源、含义及对系统性能的影响
    发表于 03-29 07:59

    如何提高FPGA的系统性能

    本文基于Viitex-5 LX110验证平台的设计,探索了高性能FPGA硬件系统设计的一般性方法及流程,以提高FPGA的系统性能
    发表于 04-26 06:43

    如何优化汽车电源系统性能的布板原则呢?

    /MAX16904开关稳压器设计为例,介绍优化系统性能的布板原则。  布线通用规则  将输入电容C3、电感L1和输出电容C2形成的环路面积保持在最小。  BIAS输出电容(C4)尽可能靠近第13引脚(BIAS
    发表于 03-15 16:39

    优化BIOS设置提高系统性能

    BIOS设置对系统性能的影响非常大,优化的BIOS设置,可大大提高PC整体性能,不恰当的设置会导致系统性能下降,运行不稳定,甚至出现死机等现象。下面就BIOS中影响系统性能
    发表于 10-10 14:27 43次下载

    频偏对脉冲成型多载波系统性能的影响分析

    频偏对脉冲成型多载波系统性能的影响分析:该文提出了一种基于脉冲成型多载波系统中频偏对系统性能影响的分析方法。该方法首先把解调后的输出分为信号及频偏带来的ICI 和ISI
    发表于 10-29 12:50 11次下载

    介绍SoC FPGA系统性能(2)

    深入介绍在系统性能方面评估供应商应该关注的某些重要主题
    的头像 发表于 06-22 00:57 2215次阅读
    介绍SoC FPGA<b class='flag-5'>系统性能</b>(2)

    关于系统性能的实际测试介绍

    系统性能实际测试
    的头像 发表于 08-21 01:29 2278次阅读

    数字电源管理可在改善系统性能的同时又可降低能源成本

    数字电源管理可在改善系统性能的同时又可降低能源成本
    发表于 03-19 00:34 7次下载
    数字<b class='flag-5'>电源</b>管理可在改善<b class='flag-5'>系统性能</b>的同时又可降低能源成本

    如何优化电源能效和系统性能

    近期,安森美(onsemi)进行了一系列电源在线直播,从功率因数、建模、仿真、验证、LLC谐振、同步整流等不同方面深入探讨如何优化电源能效和系统性能,包括专门针对汽车和工业应用的3相PFC方案,助
    的头像 发表于 01-07 17:27 2515次阅读