0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

在机器学习领域,数据和模型哪个更重要

智能感知与物联网技术研究所 来源:neptune.ai 作者:Harshil Patel 2022-03-24 14:16 次阅读

机器学习领域,数据重要还是模型重要?这是一个很难回答的问题。

模型和数据是 AI 系统的基础,这两个组件在模型的开发中扮演着重要的角色。

人工智能领域最权威的学者之一吴恩达曾提出「80% 的数据 + 20% 的模型 = 更好的机器学习」,他认为一个团队研究 80% 的工作应该放在数据准备上,数据质量是重要的,但很少有人在乎。如果更多地强调以数据为中心而不是以模型为中心,机器学习会发展的更快。

我们不禁会问,机器学习的进步是模型带来的还是数据带来的,目前还没有一个明确的答案。

在本文中,Android 开发者和机器学习爱好者 Harshil Patel 介绍了「机器学习:以数据为中心 VS 以模型为中心」,通过对比以确定两者中哪个更重要,此外,Patel 还介绍了如何使用以数据为中心的基础设施。

以数据为中心的方法 VS 以模型为中心的方法

以模型为中心的方法意味着需要通过实验来提高机器学习模型性能,这涉及模型架构的选择、训练过程。而在以模型为中心的方法中,你需要保持数据相同,通过改进代码和模型架构来提高性能。此外,对代码的改进是以模型为中心的根本目标。

目前,大多数 AI 应用都是以模型为中心的,其中一个可能的原因是学术研究非常重视 AI 领域。根据吴恩达的说法,AI 领域 90% 以上的研究论文都是以模型为中心的,因为我们很难创建大型数据集,使其成为公认的标准。因此,AI 社区认为以模型为中心的机器学习更有前景。研究者在专注于模型的同时,往往会忽略数据的重要性。

对于研究者而言,数据是每个决策过程的核心,以数据为中心的公司通过使用其运营产生的信息,可以获得更准确、更有条理、更透明的结果,从而可以帮助公司组织更顺利地运行。以数据为中心的方法涉及系统地改进、改进数据集,以提高 ML 应用程序的准确性,对数据进行处理是以数据为中心的中心目标。

f0375be2-98a9-11ec-952b-dac502259ad0.png

数据驱动 VS 以数据为中心

许多人经常混淆「以数据为中心」和「数据驱动」这两个概念。数据驱动是一种从数据中收集、分析和提取见解的方法,它有时被称为「分析」。另一方面,以数据为中心的方法侧重于使用数据来定义应该首先创建的内容;而以数据为中心的架构指的是一个系统,其中数据是主要和永久的资产。数据驱动架构意味着通过利用大量数据来创建技术、技能和环境。

对于数据科学家和机器学习工程师来说,以模型为中心的方法似乎更受欢迎。这是因为从业者可以利用自身知识储备来解决特定问题。另一方面,没有人愿意花大量时间去标注数据。

然而,在当今的机器学习中,数据至关重要,但在 AI 发展中却经常被忽视和处理不当。由于数据错误,研究者可能花费大量时间进行查错。模型精度较低的根本原因可能不是来自模型本身,而是来自错误的数据集。

f04d9542-98a9-11ec-952b-dac502259ad0.png

除了关注数据外,模型和代码也很重要。但研究者往往倾向于在关注模型的同时忽略数据的重要性。最好的方法是同时关注数据和模型的混合方法。根据应用程序的不同,研究者应该兼顾数据和模型。

以数据为中心的基础架构

以模型为中心的机器学习系统主要关注模型架构优化及其参数优化。

f06851ca-98a9-11ec-952b-dac502259ad0.png

以模型为中心的 ML 应用程序

上图中描述的是以模型为中心的工作流适用于少数行业,如媒体、广告、医疗保健或制造业。但也可能面临如下挑战:

需要高级定制系统:不同于媒体和广告行业,许多企业无法使用单一的机器学习系统来检测其产品的生产故障。虽然媒体公司可以负担得起有一个完整的 ML 部门来处理优化问题,但需要多个 ML 解决方案的制造企业不能按照这样的模板进行实施;

大型数据集的重要性:在大多数情况下,公司没有大量数据可供使用。相反,他们经常被迫处理微小的数据集,如果他们的方法是以模型为中心的,那么这些数据集很容易产生令人失望的结果。

吴恩达曾在他的 AI 演讲中解释了他如何相信以数据为中心的 ML 更有价值,并倡导社区朝着以数据为中心的方向发展。他曾经举了一个「钢铁缺陷检测」的例子,其中以模型为中心的方法未能提高模型的准确率,而以数据为中心的方法将准确率提高了 16%。

f07c738a-98a9-11ec-952b-dac502259ad0.png

以数据为中心的 ML 应用程序

在实施以数据为中心的架构时,可以将数据视为比应用程序和基础架构更耐用的基本资产。以数据为中心的 ML 使数据共享和移动变得简单。那么,在以数据为中心的机器学习到底涉及什么?在实现以数据为中心的方法时,我们应该考虑以下因素:

数据标签质量:当大量的图像被错误标记时,会出现意想不到的错误,因此需要提高数据标注质量;

数据增强:让有限的数据产生更多的数据,增加训练样本的数量以及多样性(噪声数据),提升模型稳健性;

特征工程:通过改变输入数据、先验知识或算法向模型添加特征,常被用于机器学习,以帮助提高预测模型的准确性;

数据版本控制:开发人员通过比较两个版本来跟踪错误并查看没有意义的内容,数据版本控制是维护数据中最不可或缺的步骤之一,它可以帮助研究者跟踪数据集的更改(添加和删除),版本控制使代码协作和数据集管理变得更加容易;

领域知识:在以数据为中心的方法中,领域知识非常有价值。领域专家通常可以检测到 ML 工程师、数据科学家和标注人员无法检测到的细微差异,ML 系统中仍然缺少涉及领域专家的内容。如果有额外的领域知识可用,ML 系统可能会表现得更好。

应该优先考虑哪一个:数据数量还是数据质量?

需要强调的是,数据量多并不等同于数据质量好。当然,训练神经网络不能只用几张图就能完成,数据数量是一个方面,但现在的重点是质量而不是数量。

f09187de-98a9-11ec-952b-dac502259ad0.png

如上图所示,大多数 Kaggle 数据集并没有那么大。在以数据为中心的方法中,数据集的大小并不那么重要,并且可以使用质量较小的数据集完成更多的工作。不过需要注意的是,数据质量高且标注正确。

上图中是另一种标注数据的方式,单独或组合标注。例如,如果数据科学家 1 单独标注菠萝,而数据科学家 2 将其组合标注,则两者标注的数据不兼容,导致学习算法变得混乱。因此,需要将数据标签保持一致;如果需要单独标注,请确保所有标注都以相同的方式进行。

f0c2d94c-98a9-11ec-952b-dac502259ad0.png

上图为吴恩达解释了小数据集一致性的重要性

到底需要多少数据?

数据质量不可忽视,但数据量也是至关重要的,研究者必须有足够的数据支撑才能解决问题。深度网络具有低偏差、高方差特性,我们可以预见更多的数据可以解决方差问题。但是多少数据才够呢?目前这个问题还很难回答,不过我们可以认为拥有大量的数据是一种优势,但也不是必须的。

如果你采用以数据为中心的方法,请记住以下几点:

确保在整个 ML 项目周期中数据保持一致;

数据标注保持一致;

要及时反馈结果;

进行错误分析;

消除噪声样本。

那么,我们哪里可以找到高质量的数据集?这里推荐几个网站,首先是 Kaggle:在 Kaggle 中,你会找到进行数据科学工作所需的所有代码和数据,Kaggle 拥有超过 50,000 个公共数据集和 400,000 个公共 notebook,可以快速完成任务。

f0deb1ee-98a9-11ec-952b-dac502259ad0.png

其次是 Datahub.io:Datahub 是一个主要专注于商业和金融的数据集平台。许多数据集,例如国家、人口和地理边界列表,目前在 DataHub 上可用。

f0f95f4e-98a9-11ec-952b-dac502259ad0.png

最后是 Graviti Open Datasets:Graviti 是一个新的数据平台,主要为计算机视觉提供高质量的数据集。个人开发人员或组织可以轻松访问、共享和更好地管理开放数据。

原文标题:90%论文都是以模型为中心,AI领域,数据和模型到底哪个重要?

文章出处:【微信公众号:智能感知与物联网技术研究所】欢迎添加关注!文章转载请注明出处。

审核编辑:汤梓红

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 数据
    +关注

    关注

    8

    文章

    7085

    浏览量

    89245
  • AI
    AI
    +关注

    关注

    87

    文章

    31158

    浏览量

    269543
  • 模型
    +关注

    关注

    1

    文章

    3268

    浏览量

    48946

原文标题:90%论文都是以模型为中心,AI领域,数据和模型到底哪个重要?

文章出处:【微信号:tyutcsplab,微信公众号:智能感知与物联网技术研究所】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    【「具身智能机器人系统」阅读体验】2.具身智能机器人大模型

    近年来,人工智能领域的大模型技术多个方向上取得了突破性的进展,特别是机器人控制领域展现出了巨
    发表于 12-29 23:04

    《具身智能机器人系统》第7-9章阅读心得之具身智能机器人与大模型

    医疗领域,手术辅助机器人需要毫米级的精确控制,书中有介绍基于视觉伺服的实时控制算法,以及如何利用大模型优化手术路径规划。工业场景中,协作机器人面临的主要挑战是快速适应新工艺流程。具身智
    发表于 12-24 15:03

    【「具身智能机器人系统」阅读体验】+数据具身人工智能中的价值

    机器领域货币化的重要工具,互联网领域,公司主要将用户数据用于定向广告和个性化内容。这种有针
    发表于 12-24 00:33

    【「大模型启示录」阅读体验】如何在客服领域应用大模型

    客服领域是大模型落地场景中最多的,也是最容易实现的。本身客服领域的特点就是问答形式,大模型接入难度低。今天跟随《大
    发表于 12-17 16:53

    cmp机器学习中的作用 如何使用cmp进行数据对比

    机器学习领域,"cmp"这个术语可能并不是一个常见的术语,它可能是指"比较"(comparison)的缩写。 比较
    的头像 发表于 12-17 09:35 242次阅读

    鲁棒性机器学习中的重要

    机器学习领域模型的鲁棒性是指模型面对输入
    的头像 发表于 11-11 10:19 441次阅读

    AI大模型与传统机器学习的区别

    AI大模型与传统机器学习多个方面存在显著的区别。以下是对这些区别的介绍: 一、模型规模与复杂度 AI大
    的头像 发表于 10-23 15:01 768次阅读

    电源稳压器和电源滤波器哪个重要

    电源稳压器和电源滤波器电子设备中都具有重要的作用,它们各自承担着不同的功能,因此难以直接比较哪个更重要。以下是它们各自的重要性和功能分析:
    的头像 发表于 10-03 15:25 468次阅读

    【《大语言模型应用指南》阅读体验】+ 基础知识学习

    今天来学习大语言模型自然语言理解方面的原理以及问答回复实现。 主要是基于深度学习和自然语言处理技术。 大语言模型涉及以下几个过程:
    发表于 08-02 11:03

    机器学习中的数据分割方法

    机器学习中,数据分割是一项至关重要的任务,它直接影响到模型的训练效果、泛化能力以及最终的性能评
    的头像 发表于 07-10 16:10 1975次阅读

    机器学习中的数据预处理与特征工程

    机器学习的整个流程中,数据预处理与特征工程是两个至关重要的步骤。它们直接决定了模型的输入质量,
    的头像 发表于 07-09 15:57 498次阅读

    Al大模型机器

    丰富的知识储备。它们可以涵盖各种领域的知识,并能够回答相关问题。灵活性与通用性: AI大模型机器人具有很强的灵活性和通用性,能够处理各种类型的任务和问题。持续学习和改进: 这些
    发表于 07-05 08:52

    人工神经网络与传统机器学习模型的区别

    人工智能领域机器学习和神经网络是两个核心概念,它们各自拥有独特的特性和应用场景。虽然它们都旨在使计算机系统能够自动从数据
    的头像 发表于 07-04 14:08 1420次阅读

    名单公布!【书籍评测活动NO.35】如何用「时间序列与机器学习」解锁未来?

    的提升和数据可获取性的增加,大模型已经成为人工智能研究和应用的一个重要趋势。 这些模型处理复杂任务时,尤其是
    发表于 06-25 15:00

    【大语言模型:原理与工程实践】揭开大语言模型的面纱

    复用和优化效果。这些趋势共同推动了大语言模型深度学习研究和应用中的重要地位。数据效应指出大型模型
    发表于 05-04 23:55