0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何求解传递函数

硬件工程师炼成之路 来源:硬件工程师炼成之路 作者:硬件工程师炼成之 2022-03-30 15:52 次阅读

终于到了最关键的环节,也是最难的环节,如何求出开关级的传递函数?

也就是下图这一级。

6b5001a8-afca-11ec-aa7f-dac502259ad0.png

这一级之所以这么难,主要是有开关元器件,本身是非线性的。

当然了,前面第2小节我们已经阐明了,在满足低频,小信号等条件下,也可以看成是线性的,这里就不再说了。

那么如何求解传递函数呢?

求解方法

求的方法有很多种,常见的有下面这几种:

1、小信号模型的建模思路——基本建模法

2、状态空间平均法

3、开关元件平均模型法

4、开关网络平均模型法

上面这几种方法在《开关变换器的建模与控制+张卫平编著》这本书中都有非常专业详细的讲解。其实我此章也主要是看这本书进行的一个总结。

我个人觉得最好的应该是第4种——开关网络平均模型法,或者说这是我最喜欢的方法吧,也是我深入去看的一种方法。

不过原书中的方法会画出有变压器的等效电路,我不喜欢引入变压器,所以我下面介绍的过程是没有引入变压器的,直接推导出的公式。

Buck的CCM模式求解过程

求解过程主要有这么几步:

1、二端口等效

2、端口参数关系,推导出两个式子

3、代入电路,结合原理推导出传递函数

二端口等效

先来看二端口等效是怎么回事,下面是buck的拓扑。

6b7c21ac-afca-11ec-aa7f-dac502259ad0.png

最难搞的就是里面这个MOS管和二极管了,那咋整呢?

干脆就把它看作一个整体,对外有四根线,同时底下两根线接地,所以也就是说有两个端口,是一个二端口网络

6b9664e0-afca-11ec-aa7f-dac502259ad0.png

那么电路变成下面这样的了

6ba82964-afca-11ec-aa7f-dac502259ad0.png

按照上图一等效,好像也没什么卵用,反而更加不熟悉了。先不着急

我们需要先对i1(t),i2(t),v1(t),v2(t)取开关周期的平均值,注意,是开关周期平均值,而不是总时间平均值。因为如果是总时间的平均值,那就只是直流等效了。

这里多一嘴,说说开关周期平均值和总时间平均值有什么差别,因为我在这里想了比较久,并且看起来两个值好像是一样的。

确实,如果是稳态,没有干扰信号,负载恒定,上述变量在每一个开关周期内的平均值都是一样的,并且等于总时间的平均值。

但是如果有干扰信号,那么可能上一个周期的平均值跟下一个周期的平均值不一样,也就是它是时间的函数。我们现在分析传递函数,就是分析干扰信号的影响,自然不能只看直流等效了,所以求的是开关周期的平均值。

那问题来了?求开关周期的平均值合理吗?

其实这里就有用到前面所说的线性化条件——低频信号假设,我们研究的信号大大低于开关频率,因此求开关周期的平均值是合理的。

取的周期平均值我们用新符号表示,分别为:I1(t),I2(t),V1(t),V2(t),它们都是时间的函数。那么电路就变成了下面这样:

6bbb71e0-afca-11ec-aa7f-dac502259ad0.png

现在我们需要分析下我们引入二端口的4参数I1(t),I2(t),V1(t),V2(t),他们之间到底有啥恩怨情仇?

端口参数关系,推导出两个式子

假如没有任何干扰信号,那么I1(t),I2(t),V1(t),V2(t)周期平均值和全时间的平均值是一样的,每个周期都一样,每个周期的平均值自然和全部时间内的平均值一样,这应该没毛病。

好,我们假设没有干扰信号时,平均值分别是I1,I2,V1,V2,它们是个常量。此时开关信号的占空比也是恒定的,我们用D表示。

现在我们将干扰信号加进去,我们知道,系统只有满足小信号条件的时候,才能将之近似看成线性系统。

既然干扰信号是小信号,那么这个干扰信号会引起I1(t),I2(t),V1(t),V2(t)随时间小范围变化,它们分别以I1,I2,V1,V2为中心进行波动,同理,占空比也会围绕D为中心进行波动。

各变量的波动量不就是交流小信号吗?

我们分别用符号△I1(t),△I2(t),△V1(t),△V2(t),△D(t)来表示。

那么我们可以用下面的表达式进行表示:

6bd960c4-afca-11ec-aa7f-dac502259ad0.png

式子已经列出来了,现在我们需要求他们之间的关系。

先看看V2(t)的物理意义,前面说了,它是开关周期内的平均值。

显然,V2(t)=V1(t)*D(t),为什么呢?

因为在MOS不导通的时候,那么二极管导通,v2(t)为0,而在MOS导通的时候,v2(t)等于v1(t)。

所以,v2(t)在周期内的平均值V2(t)就等于导通时间的百分占比乘以V1(t),即:

6bed6722-afca-11ec-aa7f-dac502259ad0.png

同样的,I1(t)= I2(t)*D(t),那又是为什么呢?

因为MOS在不导通的时候,i1(t)为0,而在MOS管导通的时候,i1(t)等于i2(t),所以,i1(t)在周期内的平均值I1(t) 就等于导通时间的百分占比乘以I2(t),即:

6bff2200-afca-11ec-aa7f-dac502259ad0.png

易知,上面两个式子,无论是在稳态(没有干扰),还是在有干扰的情况下,都是成立的。

小信号求解

我们把前面得到的几个式子代换一下,就可以得到小信号的表达式。

6c1371a6-afca-11ec-aa7f-dac502259ad0.png

上面的式子可能看着有点复杂,其实简单代换就出来了,最终我们得到了下面这两个式子:

6c33b65a-afca-11ec-aa7f-dac502259ad0.png

式子中忽略了高阶微小量,为什么可以忽略呢?

我是这么理解的,本来这些带△的量就是小信号,意思是围绕一个中心值小范围波动,所以带△符号的量相对于不带△符号的量是很小的。那么两个都带△符号的量相乘,乘积就更小了,所以干脆把它忽略掉了。

对于BUCK来说,只需要第一个式子就可以求出传递函数了,也就是下面这个

6c486b54-afca-11ec-aa7f-dac502259ad0.png

写的有点长,我们回顾下我们最终的目的,我们的目的是要求出Gvd,也就是△Vo/△D的值,上面式子中,我们已经能知道△V2与△D的关系,那△V2与△Vo是什么关系呢?

回到我们Buck的拓扑

6c5d64aa-afca-11ec-aa7f-dac502259ad0.png

V1(t)不就是输入信号Vi吗?

理想情况下,Vi就是恒定的,占空比变化也不会导致Vi发生变化(不要考虑输入的开关纹波,我们现在分析的是理想拓扑,输入电源为理想电源,电压就是恒定的)。

既然Vi恒定,那么V1(t)就恒定不变,那么前面说的V1(t)的变化量△V1(t)=0。所以上面的那个式子可以再次化简下,如下:

6c72a4a0-afca-11ec-aa7f-dac502259ad0.png

另一方面,△V2指的是在占空比发生变化时,在电感前面引起的电压的变化量。

我们知道了△V2,那么△Vo不就是后面电感L,电容C,负载R对△V2的分压吗?那么就有了:

6c8a7ad0-afca-11ec-aa7f-dac502259ad0.png

再结合前面得到的式子△V2=△D*Vi,我们就求得了最终的传递函数:

6ca3c396-afca-11ec-aa7f-dac502259ad0.png

到此,我们就求出了buck的开关变换器的传递函数Gvd(s)。

写到这里,我估计会有兄弟说:搞了一堆,我肉眼都能看出在电感之前的信号表达式△V2=△D*Vi,再把它后面的电感L,C,R看成是低通滤波器,1分钟就能推出传递函数了。

确实如此,有点复杂,不过我上面的推导是普遍适用的法子,我拿BUCK来举例其实不好。如果拿boost就比较好,因为boost肉眼看不出来,但用上面的法子就可以推导出来。

那下面就再看看Boost

Boost的CCM模式传递函数推导过程

有了前面的铺垫,Boost我就写简单点,其实最关键的还是那个MOS和二极管,我们的过程依然是下面几步。

1、二端口等效

2、端口参数关系,推导出两个式子

3、代入电路,结合原理推导出传递函数

二端口等效

二端口等效如下:

6cbd7ce6-afca-11ec-aa7f-dac502259ad0.png

端口参数关系,推导出两个式子

I1(t),I2(t),V1(t),V2(t)为周期平均值,假如没有任何干扰信号,它们和全时间的平均值是一样的,每个周期都一样,每个周期的平均值自然和全部时间内的平均值一样,这应该没毛病。

好,我们假设没有干扰信号时,平均值分别是I1,I2,V1,V2,它们是个常量。此时开关信号的占空比也是恒定的,我们用D表示。

现在我们将干扰信号加进去,我们知道,系统只有满足小信号条件的时候,才能将之近似看成线性系统。

既然干扰信号是小信号,那么这个干扰信号只会引起I1(t),I2(t),V1(t),V2(t)随时间小范围变化,它们分别以I1,I2,V1,V2为中心进行波动,同理,占空比也会围绕D为中心进行波动。

各变量的波动量不就是交流小信号吗?

我们分别用符号△I1(t),△I2(t),△V1(t),△V2(t),△D(t)来表示。

6cd4153c-afca-11ec-aa7f-dac502259ad0.png

式子已经列出来了,现在我们需要求他们之间的关系。

先看看V1(t)的物理意义,它是周期内的平均值。

显然,V1(t)=V2(t)*(1-D(t)),为什么呢?

因为在MOS不导通的时候,二极管(看成理想二极管)导通,v1(t)为v2(t),而在MOS导通的时候,v1(t)接GND,为0,所以,v1(t)在周期内的平均值V1(t)就等于不导通时间的百分占比乘以V2(t),即:

6cf680fe-afca-11ec-aa7f-dac502259ad0.png

同样的,I2(t)= I1(t)* (1-D(t)),那又是为什么呢?

因为MOS在不导通的时候,i2(t)等于i1(t),而在MOS管导通的时候,i2(t)等于0,所以,i2(t)在周期内的平均值I2(t) 就等于不导通时间的百分占比乘以i1(t),即:

6d0dd7cc-afca-11ec-aa7f-dac502259ad0.png

从推导过程看,上面两个式子,无论是在稳态(没有干扰),还是在有干扰的情况下,都是成立的。

小信号求解

我们把前面得到的几个式子代换一下,就可以得到小信号的表达式。

6d204b00-afca-11ec-aa7f-dac502259ad0.png

忽略高阶小项,得到下面两个小信号的式子:

6d417104-afca-11ec-aa7f-dac502259ad0.png

回想我们的目的,我们要得到传递函数,也就是需要知道△Vo与△D的比值关系。当然,我们会有一些量是已知的,比如输入Vi,占空比D,还有电感L,负载阻抗R,负载滤波电容C,这些都是已知量。

回到Boost的拓扑

6d56b8e8-afca-11ec-aa7f-dac502259ad0.png

从上面我们能得到什么式子呢?

首先,在输入端,对于交流小信号来说,输入直流Vi相当于是短路,那么电感左边相当于接地,根据复阻抗的欧姆定律,那么电感两端压降就是:sL*△I1(t),也等于-△V1(t),负号表示方向。

6d706cfc-afca-11ec-aa7f-dac502259ad0.png

关于为什么“对于交流小信号来说,输入直流Vi相当于是短路”的,我之前也写过一篇文章,可以去瞅瞅。

其次,在输出端,对于交流小信号来说,电压△Vo=△V2,同时,根据复阻抗的欧姆定律,电压等于电流乘以阻抗,即:

6d84bad6-afca-11ec-aa7f-dac502259ad0.png

然后,V1为直流分量,因此有V1=Vi;

V2也为直流分量,因此有V2=Vo,I2=Vo/R

并且在小信号求解时,我们已经推出了两个公式:

V1=(1-D)*V2;

I2=(1-D)*I1

我们把上述所有公式汇总,消除中间量,就可以求出传递函数了,如下图:

6d9880a2-afca-11ec-aa7f-dac502259ad0.png

以上就是boost求解传递函数的过程,看着是非常费劲,其实要是想通了就不难。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 二极管
    +关注

    关注

    147

    文章

    9627

    浏览量

    166296
  • 开关变换器
    +关注

    关注

    0

    文章

    43

    浏览量

    12943

原文标题:开关电源环路学习笔记(6)-开关变换器传递函数Gvd(s)推导过程

文章出处:【微信号:gh_3a15b8772f73,微信公众号:硬件工程师炼成之路】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    如何由系统函数求频率响应

    频率响应函数表征了测试系统对给定频率下的稳态输出与输入的关系,可以通过系统函数(或称为传递函数)来求解。以下是由系统函数求频率响应的步骤:
    的头像 发表于 10-18 09:32 988次阅读

    什么叫系统的频率响应函数?它和传递函数有何关系

    工具。它是一个复数函数,通常用H(jω)表示,其中ω是角频率,j是虚数单位。频率响应函数可以提供系统在频域内的行为特征,包括系统的增益、相位以及共振频率等信息。 频率响应函数传递函数
    的头像 发表于 10-18 09:29 1495次阅读

    如何测量电源的环路传递函数

    电子发烧友网站提供《如何测量电源的环路传递函数.pdf》资料免费下载
    发表于 09-04 09:57 0次下载
    如何测量电源的环路<b class='flag-5'>传递函数</b>

    OPA1632负载接在了R3和R5中间,如何计算其传递函数

    OPA1632手册中的参考电路如下: 1.负载接在了R3和R5中间,如何计算其传递函数? 2.手册中说该电路增益约为0.25,这是指的VO-与输入的比还是指V-与输入的比值? 3.手册中说R5/C3起到滤波的作用,其传递函数如何计算? 我们做数据采集需要准确算出其
    发表于 08-30 12:57

    这是正反馈运放电路? 请问传递函数是什么呢?

    单看上边的运放是正反馈电路,下边的是负反馈电路,结合在一起我就看不懂传递函数了, 传感器是弱电流信号,Iin 与输出Vout是什么关系呢? 请指教,第一次留言,谢谢!
    发表于 08-07 23:38

    怎么在labview FPGA端实现离散传递函数的表达?

    我只知道有一个这个控件,叫直接型离散传递函数实现,但是我输入离散传递函数的系数之后,他的输出有问题。我再非FPGA端尝试使用相同的系数进行仿真,输出是没有问题的。我不知道前面的问题出在哪里,或者说还有没有其他的方法实现传递函数
    发表于 05-09 11:43

    单相光伏并网逆变器的传递函数介绍

    随着可再生能源的广泛应用,光伏并网逆变器作为连接太阳能电池板和电网的关键设备,其性能对整个光伏系统的影响至关重要。本文将详细介绍单相光伏并网逆变器的传递函数,包括其数学模型、控制策略和稳定性
    的头像 发表于 04-29 14:58 1334次阅读

    典型环节的传递函数介绍

    电子发烧友网站提供《典型环节的传递函数介绍.pdf》资料免费下载
    发表于 03-01 10:28 2次下载

    调制传递函数的基本原理简析

    在研究初期,对光学系统成像的质量分析一般是在空间领域范围内进行的,直到‘空间滤波’的概念被应用到光学系统的分析中后,人们逐渐开始研究在频率域内的新的像质评价方法,继而引入光学传递函数概念。
    的头像 发表于 02-28 11:42 1373次阅读
    调制<b class='flag-5'>传递函数</b>的基本原理简析

    开关电源环路稳定性分析:环路补偿的六步策略

    如果我们把开关电源看成是不同的电路模块拼接而成,现在已经知道了每个模块的传递函数,那么接下来的事情很简单,按照闭环控制系统求解传递函数的方法求解就行。
    发表于 02-28 10:44 1906次阅读
    开关电源环路稳定性分析:环路补偿的六步策略

    基于传递函数的频率补偿办法

    以下是我在一些资料上查阅到的不知道是否有理解有什么问题,请指正 1、最简单的频率补偿就是在传递函数中引入足够低的几点,使得修改后的开环增益曲线A\'(S)与曲线20log(1/白塔)在想交出的斜率
    发表于 02-01 14:19

    传递函数的定义是什么 传递函数的拉氏反变换是什么响应

    传递函数的定义: 传递函数是一种数学工具,用于描述线性时不变系统(LTI系统)的输入与输出之间的关系,通常用H(s)表示。传递函数是Laplace变换的函数,其中s是复变量。
    的头像 发表于 02-01 10:53 4354次阅读

    低通滤波器传递函数 低通滤波器原理

    低通滤波器是一种信号处理器件,用于削弱或筛选掉信号中高频成分,保留或放大低频成分。其传递函数描述了滤波器输入和输出之间的关系。在本文中,将详细介绍低通滤波器的传递函数原理。 一、低通滤波器
    的头像 发表于 01-30 10:23 4277次阅读

    低通滤波器电路特点 低通滤波器传递函数怎么算

    低通滤波器电路是一种能够通过滤除高频信号而通过低频信号的电路。它广泛应用于信号处理、音频放大和通信系统中,用于去除噪音和不需要的高频成分。低通滤波器的设计和传递函数计算是相关电子学和信号处理课程中
    的头像 发表于 01-24 14:33 2022次阅读

    labview能实现S传递函数

    请问这些模块能在Labview中找到吗,期刊作者说是在labview中实现的,但是那个s传递函数VI在哪里啊,有大佬知道吗
    发表于 01-15 20:47