0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

AI公司如何才能走通制药这条路?不想做外包 当不了药神

脑极体 来源:脑极体 作者:脑极体 2022-04-05 14:03 次阅读

AI能制药,早已不是啥新鲜事了。

尤其是疫情之后,包括辉瑞、罗氏、默克、阿斯利康、葛兰素史克、赛诺菲、强生等在内的顶级制药公司,纷纷加速拥抱人工智能,不是与AI公司合作,就是收购或自建AI部门。

从分子实验到制造供应链甚至市场营销,AI已经在整个制药价值链上,展现出极大的潜力。

AI与制药的融合过程,以两种模式为主:

一种是VIC模式,即“VC(风险投资)+IP(知识产权)+CRO(研发外包)”,其中AI公司作为技术外包,为药厂提供降本增效的解决方案;

另一种是AI-Driven模式,专门以AI技术来驱动分析预测发现新的化合物、蛋白质,自己研发创新药。

相比“传统产业智能化”的外包服务商,AI企业“自立山头”制药,有着更大的商业想象空间,也确实在过去几年间,吸引了大规模的融资和巨头携资入场,仅2021年中国该领域的投融资规模就超过了80亿。

其中最具代表性的,就是谷歌母公司Alphabet不久前成立的AI药物公司Isomorphic Labs,其创始人正是研发了AlphaFold2算法的AI先锋DeepMind的CEO。显然,谷歌也非常看好以尖端AI技术在生物学领域“大展拳脚”的前景。

那么问题来了,生物制药领域是一个专业知识壁垒极高的领域, AI参与制药已经有15-20年的时间了,期间机器学习方法一直被用于药物发现和临床试验当中。2000年,利用机器进行“高通量筛选”已经被应用在化合物测试当中。但目前为止,还没有一个验证AI可以“独立行走”创新药的成功案例。

制药这条路,野心勃勃的AI公司该如何走下去?作为AI“优等生”和医药“后进生”,中国在AI制药上的赢面究竟有多大呢?

不是药神,AI制药现在究竟几分熟?

制药门槛如此之高,AI公司凭什么认为自己可以绕过物理学定律的限制“自立山头”呢?AI真的能取代传统实验手段,成为全村的希望吗?

正如当初深度学习爆火之后大众对AI不切实际的想象和惧怕一样,在制药这件事上,AI也并非无所不能,我们应该对AI设定一个合理预期:

以深度学习为主的AI技术有其适用范围,目前主要用在分析处理医药数据、预测疾病靶点、设计和优化化合物、实验自动化等领域当中,解决制药场景的实际问题。

未来,随着这些细分场景的不断成功和数据积累,不断反哺AI模型,可能3-5年才会有较大的突破。詹姆斯·贝森(James Bessen)在《边做边学》(Learning By Doing)一书中也提出,至少5-10年的时间AI才会让制药行业真正转型。

所以,在全球范围内,AI制药都处在较早期的阶段,AI公司造的药,目前可能才只有“一分熟”。指望突然掉下一款由AI主导研发的石破天惊的创新药,还是很遥远的。

既然隔行如隔山,由药厂引入AI不是强强联合、事半功倍吗,为什么AI公司还要冒着失败的风险去“另立山头”,而资本市场也愿意买账呢?

另立山头,谁给AI企业的自信?

原因之一,是AI的角色变了。

目前,制药行业广泛采用的是基于目标靶点的研究模式(Target-centric),即先要找到导致疾病的特定蛋白质(有效靶点),通过分析化合物、基因、疾病和蛋白质之间的关系,进行有效分子的筛选与设计。这个过程往往靠的是研究人员自身的创造力和经验,离不开制药公司大量高质量数据的支撑。

在这个过程中,AI的发挥空间就很大了。

1.更快。随着基因组学的发展,寻找和选择新药分子已经成为一项数据密集型任务,利用AI来自动学习分析处理数据,能够更快地推断出疾病机制,发现新靶点,从而加速研发过程。比如麻省理工学院团队推出的生物技术初创公司ReviveMed,就是基于MIT的代谢物数据库,分析药物-蛋白质、蛋白质-蛋白质的相互作用,识别特定的代谢物分子,找到一些有希望的治疗靶点,这些代谢物分子就有可能是未来的药物。

2.更早。如果医疗实验数据是凌乱而未标记的,那么后续的分析处理预测都不容易实现,所以在新药研发上面向AI的数据治理工作要开展得更早,现有的研发和业务流程必须重新设计,才能充分发挥AI、大数据、高性能计算等的协同价值,这涉及到大规模的组织转型,也使得数据工程师、算法工程师在制药领域的参与更早、更深。

3.更广。“靶点-疾病”的研发范式,使得传统制药公司不会将精力集中在罕见疾病的治疗上,因为ROI投资回报比太低,而AI技术可以通过表型数据(图像)进行药物的筛选和设计,反过来帮助找到新的治疗靶点,在计算机中合成和测试分子,这让罕见病有了治疗甚至治愈的希望,对全人类来说都是好事。

从实验室助手变成了新药研发的主角,AI“独立行走”的信心自然也就愈加强烈了。

原因之二,是重建一套新范式更方便。

虽然有一些制药公司思想开明、态度开放,但事实是,制药公司对其业务和研究方法的保守是出了名的,不愿意接受变革的占多数。一项研究显示,2019年和2020年生命科学领域人工智能相关专利的申请中,只有不到2%是知名制药公司提交的。

一些制药公司甚至都没有数字化,很多数据都用纸质档案保存,采用AI还需要时间;有的大型制药公司还是传统思维占主导,倾向于研发传统药物制剂。还有的则倾向于保留数据和技术作为内部商业机密,不愿意分享给AI技术公司……既然如此,开辟一条全新的赛道自己制药,对AI公司来说更加灵活,研发速度也更快。

与此同时,AI技术的发展,也让AI主导的研发成为可能。

一方面,小样本学习、生成技术等的应用,可以减少研发过程中的数据依赖。比如有公司就开发了一个名为Generative TensorialReinforcement Learning(GENTRL)的平台,让两种DL深度学习模型来相互作用,一个生成分子,一个鉴别真假,解决实验数据不足的问题。而一旦确定了标靶,就可以利用算法直接设计出所需要的分子结构了。

另外,虽说隔行如隔山,但端到端的深度学习,不需要算法人员去定义一些特征和规则,比如蛋白质结构预测模型能够直接根据序列的特征输出三维结构,目前已经达到实验的精度。所以尽管目前人类科学对很多疾病的理解都还处于初级阶段,算法人员也未必对生命科学知识十分精通,但运用AI工具来开发新药,完全是可行的。

原因之三,就是自己做原研药,这件事实在太香了。

目前,抗体药这类生物药已经逐渐超过了化学药的数量,成为增长最快的治疗药物。全球已经有超过100款抗体药上市,比如新冠特效药就是抗体药,找到能够中和病毒的活性抗体来发挥作用。

以前,抗体药需要从康复病人中去提取和筛选,这个过程费时费力,还有很大的不确定性。而通过AI直接对现有抗体进行设计和优化,实现高效的中和效果,一种新的抗体药物就诞生了。

原研药市场广阔、利润丰厚,自己研发无疑把握了最具价值的一环。所以说,AI公司自己做药它不香吗?

中国制药,在AI画布上描绘全新图景

想必很多读者通过新闻和行业报道都发现了,在AI制药这个领域,美国在技术、资本、产业规模上都处于领先地位,AI开发的特效药、疫苗、疗法、平台等不断涌现。

而中国在AI技术上并不落后,这是否意味着有希望在制药领域取得突破呢?在AI这块技术画布上描绘制药蓝图,对于中国意味着三重价值:

1.将生命福祉把握在自己手里。

在医药医疗领域,数据都是非常敏感的,比如要针对个体的基因序列和新抗原设计出对应的药物,对患者来说无疑是更有效、更精准、更普惠的。但是基因数据如果只能交给海外科技企业来分析和生产,其中存在的风险不用多说。

前不久《自然》杂志上就发布了一篇论文,总部位于美国北卡罗来纳州的制药公司Collaborations Pharmaceuticals,就与伦敦、瑞士的研究人员合作,训练出了一个药物开发工具MegaSyn,在短短六个小时内自动生产出40000种有毒的化学制剂。

利用AI结合群体基因特质,针对性地开发精准打击的生物武器,并非不可能。所以中国必须将AI制药的尖端科技掌握在自己手中。

4eae255cd98d4932baad777151c6c0e4~tplv-tt-shrink:640:0.image

2.在原研药领域取得较大突破。

大家可能都看到了,最新引进的新冠特效药价格高达数千元,原研药的销量高、利润高,已经是大众熟知的事实,而开发原研药一直是中国制药产业的老大难问题。必须意识到,在传统生命科学领域,中国的起步较晚、基础也相对薄弱,比如生物实验中需要的高精度显微镜、测试试剂等也是被国外“卡脖子”的,在这种情况下,AI提供了一种开发原研药的全新思路。

比如通过AI算法来代替冷冻电镜,也可以解开蛋白质结构。目前,AlphaFold预测出来的结果已经可以和冷冻电镜的方法相媲美。随着中国在相关算法上的突破,未来能够降低对一些卡脖子实验技术的依赖。

在创新药研发上,从科研到产业化之间的距离是非常近的,很多突破性技术和新分子都是从研究院所实验室中诞生,再由药厂进行转化、评估、临床试验……而在AI研究领域,中国科研院所的能力已经处于一流水平。

AI重新定义制药流程,有助于中国变成一个制药强国。

3.进一步发挥中国的AI产业优势。

我们都知道中国AI产业化的步伐很快,主要集中在互联网、工业、矿山、城市管理等领域,在生命科学领域里的AI应用,总体还处于初级阶段。

无论是AI公司驱动的创新药,还是传统药厂的AI化,都有很大的发展空间。目前,几乎中国头部科技企业如BATH(百度、腾讯、阿里、华为)等都在AI药物研发上有所动作。

随着AI制药的进一步发展,生命科学领域的数据、算力、算法都将进一步升级迭代,工具平台生态也将进一步搭建和丰富起来,届时,中国在AI领域的优势也将进一步放大。

都说“一张白纸上可以画出最新最美的图画”,AI制药之于中国,就是在远远追赶的生命科学实验道路之外,新建一条由数据铺成的高速公路,搭乘智能小车跑得更快、更早抵达新药研发的目的地。

盛名之下:AI解锁制药的三把钥匙

AI发展最不可或缺的,是信心。历史上的两次AI寒冬,就与投资者和大众对AI回报预期的垮掉,有着直接关系。AI制药的投融资浪潮,似乎在大鸣大放之后,不得不面对一个骨感的现实:一开始想得很美,但突破来得很慢。

曾有一位AI制药公司的创始人对媒体透露,第一轮融资时投资人希望能够做药,第二轮就开始建议他们做服务(也就是药厂AI技术外包)了。

资本市场对AI制药的疑虑,是高潮之下的正常调整,但要避免透支信任、解锁光明的未来,AI制药企业恐怕还需要拿到三把钥匙:数据、算力、算法——没错,就是虽然朴实、但至关重要的AI“三驾马车”。

实际上,大部分AI的问题都是因为数据不够、算力不够、算法不够好。而解决方法也是从这三点入手。

先说数据。

前面提到,目前人类对生命科学的理解还非常初级,端到端学习也可以减少对一部分数据的依赖,但基本的高质量数据还是AI制药必不可少的基础。

受实验手段、医疗技术的限制,目前AI对蛋白质功能的分析还是比较初级的,对分子的功能结构、关系序列等的描述不够,这显然会给AI学习带来困扰,蛋白分子会不断地和别的分子进行交互,形状也会随之改变,用纯数据驱动的AI方法去生搬硬套,结果很可能是“无效设计”。

就如化学家Derek Lowe在《科学》杂志上指出的,即使两种蛋白质具有物理上结合在一起的结构,也很难说它们实际上会粘合得有多好。用在动物或人身上的时候也不一定总是有效。

更深入地理解生物世界,离不开大量优质的数据,这些往往通过几十年的积累和实验获得,掌握在药企自己手里,不会轻易分享。此外基因数据、医疗数据还涉及到隐私伦理问题,需要在严格的数据保护法律法规之下使用。

所以对于AI企业来说,亟需要探索一种与药企合作、分利的模式,解开数据的桎梏。

再说算力。

以蛋白质结构预测为例,它往往需要超大规模的算力支持。因为生物系统中分子之间的相互作用特别多,设计出来的模型可能参数不大,但比较复杂,比计算机视觉、NLP等模型要大很多。

此前曾有中国AI公司训练出了中国版AlphaFold2,团队成员表示遇到最大的困难,就是GPU资源(算力)有限,难以同时进行多次训练来比较效果,所以只好在模型设计上下功夫,尽量减少试错次数。

另一个科学家也向脑极体透露,其开发的蛋白质结构预测平台,对一个模型的一个数据点(data point)进行计算就需要800G显存,意味着需要十几块顶级显卡,如果要做全规模训练那算力成本简直不可想象。

所以,一方面,需要加强AI算力基础设施建设,提供更多更普惠的算力资源,通过产业合作等方式来支撑生命科学的AI应用发展。另一方面,对生物AI模型的“瘦身”优化成为大势所趋,过大的模型即便在实验室里有充沛的算力支持,在实际部署落地的时候也会对内存存储等提出挑战。

这自然就要提到更好的算法。

新药研发是个非常复杂、探索未知的过程,世界一流的算法和成果,离不开世界一流的科研。目前来看,中国在AI领域“跟随”更多,面向底层、有影响力的突破较少。

斯坦福大学发布的2022年人工智能指数报告(2022 AI Index Report)中也显示,2021 年,中国在人工智能期刊、会议和知识库出版物的数量上继续领先世界,比美国高出 63.2%,但在引用数量上却低于美国、欧盟和英国。

1b9f8105b2c34a2eb7fd9b44b6e73d29~tplv-tt-shrink:640:0.image

在一个全新的领域开发出新的算法,没有任何经验可循,核心还是在人才。首先需要人才具备寻找问题、提出问题的能力,以及耐心安心解决底层技术问题的科研环境,此外还需要具备生物学、药剂学、化学等交叉知识,这些都给AI学科建设和人才培养提出了新的挑战。

一位AI科学家告诉我,在她看来,现在对AI人来说既是最好的时代,也是最坏的时代。一方面AI产业发展带来的新机遇非常多,另一方面从业者也会感受到一种沉甸甸的责任感,技术迭代速度之快带来了高强度的研究压力。

不难看出,AI驱动的研究范式也带来了全新的挑战,能否在产业重新分工中占据优势,中国AI还有一些关卡要过,其中很多基础条件需要长期的、体系化、科学的投入。

无论如何,AI必将引领生物制药领域未来十年甚至更远的创新方向。从这个角度看,AI制药公司“自立山头”,迈出了关键的一步,这一选择是必须肯定且支持的。接下来的重点在于,如何在成果数量与质量上赶超和引领世界一流水平。

就像科学史家托马斯·库恩在《科学革命的结构》中所写的那样,科学就是通过不断地转换范式,打破旧有框架束缚,才取得了进步。

人类的健康和希望,就隐藏在这样的“不走寻常路”中。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • AI
    AI
    +关注

    关注

    87

    文章

    30763

    浏览量

    268913
收藏 人收藏

    评论

    相关推荐

    AI Windows PC端1.0版本登陆微软商城

    Al Windows PC端 1.0 版本已于 12 月初正式登陆微软商城。作为定制版本的核心亮点,豆神教育首次面向 Windows用户全面推出为中国青少年提供大语文领域素质能力培养的数字内容产品和 AI智能学习工具 PC 端产品,具备实时搜索问答与深度解析功能,为
    的头像 发表于 12-10 11:16 320次阅读

    PLC加计量泵数据采集远程监控系统方案

    污水处理加设备是一种集成了PLC控制系统和计量泵的高效、精确的自动化设备,广泛应用于电厂、钢铁、石化、化工、制药、造纸等多个行业的水处理过程中。现场通常配置有触摸屏与电控柜,以本地控制、远程干预
    的头像 发表于 11-20 17:14 171次阅读

    NVIDIA AI助力日本制药公司推进药物研发

    制药公司、医疗技术公司和学术研究人员正在开发主权 AI 能力,以驱动药物发现、加速基因组学和医疗设备。
    的头像 发表于 11-19 15:40 279次阅读

    盾集团与Arm达成合作,推动AI HPC晶片创新

    近日,盾集团在美国宣布了一项重要策略合作。旗下公司与安国国际科技正式加入Arm® Total Design计划,与全球领先的半导体公司安谋(Arm)携手合作,共同推动高效能运算(
    的头像 发表于 10-21 15:52 535次阅读

    专业PCB设计,高速PCB设计,PCB设计外包, PCB Layout,PCB Design,PCB画板公司,PCB设计公司,迅安通科技公司介绍

    专业PCB设计,高速PCB设计,PCB设计外包, PCB Layout,PCB Design,PCB画板公司,PCB设计公司,深圳市迅安通科技单元电路layout设计指导
    发表于 10-13 15:48

    制药厂DCS数据采集远程监控解决方案

    设备在生产流程中,需要不断的添加和补充各种微量元素或催化剂去控制发酵液的状态,因此需要实现对添加量的精确控制。现有制药厂计划新上一套全自动的加装置,由种子罐、发酵罐、补料罐、尾气碱洗等设备组
    的头像 发表于 09-23 13:35 199次阅读
    <b class='flag-5'>制药</b>厂DCS数据采集远程监控解决方案

    《黑神话:悟空》真的带火云电脑了吗?

    想做“天命猴”的人,和不想做牛马的人
    的头像 发表于 09-13 11:17 1735次阅读
    《黑神话:悟空》真的带火云电脑了吗?

    微软被曝将AI研发外包给OpenAI

    网络安全公司Okta的首席执行官托德·麦金农(Todd McKinnon)在CNBC的专访中分享了关于当前科技巨头在人工智能(AI)领域的战略布局的见解。他特别指出,谷歌在捍卫其搜索引擎霸主地位的同时,正努力保持AI研发的内部化
    的头像 发表于 06-12 15:57 373次阅读

    2013 款行者 2 车偶发性无法起动

    2013款行者2车偶发性无法起动蔡永福故障现象故障诊断故障排除一辆2013款行者2车,搭载2.0LSi4Petrol发动机,累计行驶里程约为4.5万km。车主反映,车辆偶发
    的头像 发表于 06-06 10:00 379次阅读
    2013 款<b class='flag-5'>路</b>虎<b class='flag-5'>神</b>行者 2 车偶发性无法起动

    新火种AI|如何看待AI蹭热点,合成假新闻?官方:治疗AI乱象,务必下猛

    针对AI造谣乱象,官媒明确发声:欲去“沉疴”还需“猛”。
    的头像 发表于 04-19 21:59 232次阅读
    新火种<b class='flag-5'>AI</b>|如何看待<b class='flag-5'>AI</b>蹭热点,合成假新闻?官方:治疗<b class='flag-5'>AI</b>乱象,务必下猛<b class='flag-5'>药</b>

    性能强劲、稳定高效的雷64核服务器升级亮相

    近期,雷科技基于兆芯开胜KH-40000系列处理器打造的博睿FX2服务器迎来升级更新,搭载双KH-40000/32处理器的雷FX2-Z1UC1服务器,具备性能卓越、运行稳定、生态成熟等特点
    的头像 发表于 02-23 11:31 801次阅读

    制药装备企业如何实现制粒机远程监控和运维管理

    行业背景 随着生活水平的不断提高,人们对于医疗保健药品的需求越来越高,带动了制药装备行业的快速发展。制粒机是制药装备中常见的设备,主要用于药剂、粒等药品的生产。通过PLC对制粒机进行自动化改造
    的头像 发表于 02-22 17:34 321次阅读
    <b class='flag-5'>制药</b>装备企业如何实现制粒机远程监控和运维管理

    PLC远程监控在制药行业的应用

    PLC远程监控在制药行业的应用 制药行业是一个需要高度控制和精确性的行业,而PLC远程监控技术正是这种需求的完美解决方案。PLC远程监控技术是指将传感器、执行器和其他设备连接到PLC系统中,并
    的头像 发表于 02-19 17:13 539次阅读
    PLC远程监控在<b class='flag-5'>制药</b>行业的应用

    德睿智与复宏汉霖达成战略合作,共同研发AI赋能的ADC药物和抗衰老疗法平台

    2024年1月19日,临床阶段AI驱动的创新药物研发公司德睿智宣布与上海复宏汉霖生物技术股份有限公司(以下简称“复宏汉霖”)达成战略合作,共同研发人工智能赋能的抗体偶联药物(ADC)
    的头像 发表于 01-26 18:14 2461次阅读

    生物制药智能照明控制系统解决方案

    安科瑞 程瑜 187 0211 2087 1、概述  企厂区范围广、各类型建筑多、洁净制药车间相对封闭,白天生产也会使用到大量照明,在药品的整个生产计划过程中,照明设备用电负荷也很高。在保障正常
    的头像 发表于 01-16 10:29 303次阅读
    生物<b class='flag-5'>制药</b>智能照明控制系统解决方案