0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

训练卷积神经网络通过绘画3D地形识别画家

星星科技指导员 来源:NVIDIA 作者:ichelle Horton 2022-04-07 17:06 次阅读

通过一种新开发的人工智能工具,识别绘画伪造品变得更容易了。该工具可以精确地识别风格差异,精确到一个画笔刷毛。 Case Western Reserve University ( CWRU )团队的 research 通过训练卷积神经网络,根据绘画的 3D 地形来学习和识别画家。这项工作可以帮助历史学家和艺术专家区分合作作品中的艺术家,并找到伪造的作品。

鉴定古画有几种方法。专家经常评估材料的类型和状态,并使用科学方法,如显微分析、红外光谱和反射术。

但是,这些详尽的方法非常耗时,可能会导致错误。他们也无法识别一件艺术品的多个画家。根据这项研究,像埃尔·格雷科和伦勃朗这样的画家经常雇佣艺术家的工作室,以与自己相同的风格绘制画布的各个部分,使得个人贡献不明确。

虽然用机器学习分析艺术品是一个相对较新的领域,但最近的研究集中于将人工智能方法与高分辨率的绘画图像相结合,以了解画家的风格并识别画家。研究人员假设, 3D 分析可以保存比图像更多的数据,在图像中,笔触图案、油漆沉积和干燥方法等特征可以作为艺术家独特的指纹。

CWRU 的安布罗斯·斯瓦西物理学教授、资深作家肯尼斯·辛格( Kenneth Singer )在一份 press release 的报告中说:“ 3D 地形是人工智能“看到”绘画的一种新方式。”。

研究人员用光学轮廓仪从一个表面提取地形数据,扫描了同一场景的 12 幅画,用相同的材料绘制,但由四位不同的艺术家绘制。光学轮廓仪通过对约 5 至 15 mm 的小方形艺术片进行采样,检测并记录表面的微小变化,这可归因于某人如何握住和使用画笔。

然后,他们训练一组卷积神经网络来发现小斑块中的模式,为每个艺术家采样 160 到 1440 个斑块。使用 NVIDIA GPU 和 cuDNN 加速深度学习框架,该算法将样本匹配回单个画家。

研究小组对一位艺术家的 180 幅油画进行了算法测试,将样本与一位画家进行了匹配,准确率约为 95% 。

据合著者、 CWRU 的 Warren E.Rupp 物理学副教授 Michael Hinczewski 所说,在训练数据集有限的情况下,使用如此小的训练集的能力对于后来的艺术历史应用是有希望的。

辛切夫斯基说:“其他大多数使用人工智能进行艺术归属的研究都集中在整个绘画的照片上。”。“我们将这幅画分解成从半毫米到几厘米见方的虚拟小块。因此我们甚至不再有关于主题的信息,但我们可以从单个小块准确地预测谁画了它。这太神奇了。”

根据他们的发现,研究人员将表面形貌视为使用无偏定量分析进行归因和伪造检测的额外工具。在与位于马德里的艺术保护公司 Factum Arte 的合作下,该团队正在对西班牙文艺复兴时期画家 El Greco 的几件作品进行艺术家工作室归属和保护研究。

与研究相关的数据和代码可通过 GitHub 获取。这项工作是来自 CWRU 艺术史和艺术系、克利夫兰艺术学院和克利夫兰艺术博物馆的研究人员的共同努力。

关于作者

Michelle Horton 是 NVIDIA 的高级开发人员通信经理,拥有通信经理和科学作家的背景。她在 NVIDIA 为开发者博客撰文,重点介绍了开发者使用 NVIDIA 技术的多种方式。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4762

    浏览量

    100533
  • NVIDIA
    +关注

    关注

    14

    文章

    4934

    浏览量

    102794
  • 人工智能
    +关注

    关注

    1791

    文章

    46840

    浏览量

    237518
收藏 人收藏

    评论

    相关推荐

    关于卷积神经网络,这些概念你厘清了么~

    神经网络训练中非常有效。卷积层使用一种被称为卷积的数学运算来识别像素值数组的模式。卷积发生在隐
    发表于 10-24 13:56

    卷积神经网络的基本概念、原理及特点

    卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习算法,它在图像识别、视频分析、自然语言处理等领域有着广泛的应用。本文将详细介绍卷积
    的头像 发表于 07-11 14:38 788次阅读

    怎么对神经网络重新训练

    重新训练神经网络是一个复杂的过程,涉及到多个步骤和考虑因素。 引言 神经网络是一种强大的机器学习模型,广泛应用于图像识别、自然语言处理、语音识别
    的头像 发表于 07-11 10:25 412次阅读

    卷积神经网络和bp神经网络的区别在哪

    结构、原理、应用场景等方面都存在一定的差异。以下是对这两种神经网络的详细比较: 基本结构 BP神经网络是一种多层前馈神经网络,由输入层、隐藏层和输出层组成。每个神经元之间
    的头像 发表于 07-04 09:49 9155次阅读

    卷积神经网络的实现原理

    卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。本文将详细介绍卷积
    的头像 发表于 07-03 10:49 489次阅读

    bp神经网络卷积神经网络区别是什么

    结构、原理、应用场景等方面都存在一定的差异。以下是对这两种神经网络的比较: 基本结构 BP神经网络是一种多层前馈神经网络,由输入层、隐藏层和输出层组成。每个神经元之间
    的头像 发表于 07-03 10:12 1003次阅读

    卷积神经网络的基本结构和工作原理

    和工作原理。 1. 引言 在深度学习领域,卷积神经网络是一种非常重要的模型。它通过模拟人类视觉系统,能够自动学习图像中的特征,从而实现对图像的识别和分类。与传统的机器学习方法相比,CN
    的头像 发表于 07-03 09:38 426次阅读

    卷积神经网络训练的是什么

    训练过程以及应用场景。 1. 卷积神经网络的基本概念 1.1 卷积神经网络的定义 卷积
    的头像 发表于 07-03 09:15 347次阅读

    卷积神经网络的原理与实现

    1.卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。 卷积
    的头像 发表于 07-02 16:47 497次阅读

    卷积神经网络的基本结构及其功能

    卷积神经网络(Convolutional Neural Network,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。本文将详细介绍卷积
    的头像 发表于 07-02 14:45 1156次阅读

    卷积神经网络的原理是什么

    基本概念、结构、训练过程以及应用场景。 卷积神经网络的基本概念 1.1 神经网络 神经网络是一种受人脑
    的头像 发表于 07-02 14:44 553次阅读

    卷积神经网络在图像识别中的应用

    卷积操作 卷积神经网络的核心是卷积操作。卷积操作是一种数学运算,用于提取图像中的局部特征。在图像识别
    的头像 发表于 07-02 14:28 925次阅读

    卷积神经网络的基本原理、结构及训练过程

    卷积神经网络(Convolutional Neural Network,简称CNN)是一种深度学习算法,广泛应用于图像识别、视频分析、自然语言处理等领域。本文将详细介绍卷积
    的头像 发表于 07-02 14:21 2043次阅读

    基于毫米波雷达的手势识别神经网络

    使用3D-CNN对三种手势进行分类,结果表明识别率为91%。然而,3D-CNN在数据分辨率灵敏度和数据要求方面存在局限性。Ref等人的另一项研究[12]介绍了一种定制的多分支卷积
    发表于 05-23 12:12

    卷积神经网络的优点

    卷积神经网络的优点  卷积神经网络(Convolutional Neural Network,CNN)是一种基于深度学习的神经网络模型,在图
    的头像 发表于 12-07 15:37 4088次阅读