0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于深度学习框架快速准确预测心力衰竭

星星科技指导员 来源:NVIDIA 作者:Michelle Horton 2022-04-07 17:37 次阅读

西奈山研究人员发明了一种新的人工智能技术,可以识别心脏内的微小变化,并准确预测心力衰竭。最近,在美国心脏病学院杂志:心血管成像的发布中,这项研究可以更快地诊断和早期检测充血性心力衰竭,帮助医生更有效地治疗患者并减缓疾病进展。

“我们证明,深度学习算法可以从 ECG 波形数据中识别心脏两侧的血液泵送问题。通常,诊断这些类型的心脏病需要昂贵且耗时的程序。我们希望该算法能够更快地诊断心力衰竭。”资深作者 Benjamin S 。 Glicksberg 是西奈山遗传学和基因组科学的助理教授,他在一份新闻稿报告中说。

作为 65 岁以上住院患者最常见的诊断,美国有 600 多万人患有充血性心力衰竭。当心脏无法有效地将血液泵入全身时,就会出现这种情况,血液回流到心脏的速度比泵出的速度快,从而造成充血。随着身体的补偿和疾病的进展,会出现一些副作用,如心脏增大、肾衰竭、心悸和器官氧合不足。

在诊断心脏病时,医生通常使用心电图测量心跳和心电活动,同时使用超声心动图测量详细的心脏图像。然而,诊断心力衰竭需要专业知识,特殊设备并不总是现成的,而且可能很耗时。

通常情况下, ele CTR 心图变化对人眼来说也太微妙,无法检测到,导致诊断延迟。

先前的研究已经开发出人工智能算法,用于检测左心室(将含氧血液推入体内的一侧)的弱点。然而,到目前为止,还不存在评估右心室功能的工具,这种工具可以将脱氧血液从身体输送到肺部,从而导致对患者整个心脏功能的概述不完整。

研究人员致力于创建一个评估左心室和右心室功能的深度学习框架。研究小组使用自然语言处理技术训练计算机阅读和处理书面报告,并对148227名患者的超声心动图和心电图进行相关分析。研究人员利用来自西奈山卫生系统四家不同医院的70多万份超声心动图和电子心电图报告,训练神经网络以发现模式并识别泵送强度。来自第五家医院的数据用于测试该算法。

模型在符合 HIPAA 的 NVIDIA GPU – 加速 Azure 云虚拟机上进行训练,虚拟机带有 NVIDIA V100 张量核 GPU。

该算法以 94% 的准确率预测了哪些患者的左心室功能正常,并在 87% 的时间内识别出左心室功能较弱的患者。右心室功能更难预测,该算法在预测哪些患者右心室瓣膜功能较弱时的准确率达到 84% 。

Glicksberg 说:“我们的研究结果表明,该算法可能是帮助临床工作者对抗各种患者心力衰竭的有用工具。”。“我们正在仔细设计前瞻性试验,以在更真实的环境中测试其有效性。”

关于作者

Michelle Horton 是 NVIDIA 的高级开发人员通信经理,拥有通信经理和科学作家的背景。她在 NVIDIA 为开发者博客撰文,重点介绍了开发者使用 NVIDIA 技术的多种方式。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1791

    文章

    47269

    浏览量

    238439
  • 深度学习
    +关注

    关注

    73

    文章

    5503

    浏览量

    121154
收藏 人收藏

    评论

    相关推荐

    GPU深度学习应用案例

    能力,可以显著提高图像识别模型的训练速度和准确性。例如,在人脸识别、自动驾驶等领域,GPU被广泛应用于加速深度学习模型的训练和推理过程。 二、自然语言处理 自然语言处理(NLP)是深度
    的头像 发表于 10-27 11:13 394次阅读

    FPGA加速深度学习模型的案例

    FPGA(现场可编程门阵列)加速深度学习模型是当前硬件加速领域的一个热门研究方向。以下是一些FPGA加速深度学习模型的案例: 一、基于FPGA的AlexNet卷积运算加速 项目名称
    的头像 发表于 10-25 09:22 222次阅读

    AI大模型与深度学习的关系

    人类的学习过程,实现对复杂数据的学习和识别。AI大模型则是指模型的参数数量巨大,需要庞大的计算资源来进行训练和推理。深度学习算法为AI大模型提供了核心的技术支撑,使得大模型能够更好地拟
    的头像 发表于 10-23 15:25 726次阅读

    NVIDIA推出全新深度学习框架fVDB

    在 SIGGRAPH 上推出的全新深度学习框架可用于打造自动驾驶汽车、气候科学和智慧城市的 AI 就绪型虚拟表示。
    的头像 发表于 08-01 14:31 603次阅读

    PyTorch深度学习开发环境搭建指南

    PyTorch作为一种流行的深度学习框架,其开发环境的搭建对于深度学习研究者和开发者来说至关重要。在Windows操作系统上搭建PyTorc
    的头像 发表于 07-16 18:29 1038次阅读

    利用Matlab函数实现深度学习算法

    在Matlab中实现深度学习算法是一个复杂但强大的过程,可以应用于各种领域,如图像识别、自然语言处理、时间序列预测等。这里,我将概述一个基本的流程,包括环境设置、数据准备、模型设计、训练过程、以及测试和评估,并提供一个基于Mat
    的头像 发表于 07-14 14:21 2204次阅读

    深度学习模型中的过拟合与正则化

    深度学习的广阔领域中,模型训练的核心目标之一是实现对未知数据的准确预测。然而,在实际应用中,我们经常会遇到一个问题——过拟合(Overfitting)。过拟合是指模型在训练数据上表现
    的头像 发表于 07-09 15:56 948次阅读

    深度学习中的时间序列分类方法

    时间序列分类(Time Series Classification, TSC)是机器学习深度学习领域的重要任务之一,广泛应用于人体活动识别、系统监测、金融预测、医疗诊断等多个领域。随
    的头像 发表于 07-09 15:54 917次阅读

    基于深度学习的小目标检测

    在计算机视觉领域,目标检测一直是研究的热点和难点之一。特别是在小目标检测方面,由于小目标在图像中所占比例小、特征不明显,使得检测难度显著增加。随着深度学习技术的快速发展,尤其是卷积神经网络(CNN
    的头像 发表于 07-04 17:25 885次阅读

    深度学习的典型模型和训练过程

    深度学习作为人工智能领域的一个重要分支,近年来在图像识别、语音识别、自然语言处理等多个领域取得了显著进展。其核心在于通过构建复杂的神经网络模型,从大规模数据中自动学习并提取特征,进而实现高效
    的头像 发表于 07-03 16:06 1462次阅读

    深度学习常用的Python库

    深度学习常用的Python库,包括核心库、可视化工具、深度学习框架、自然语言处理库以及数据抓取库等,并详细分析它们的功能和优势。
    的头像 发表于 07-03 16:04 648次阅读

    TensorFlow与PyTorch深度学习框架的比较与选择

    深度学习作为人工智能领域的一个重要分支,在过去十年中取得了显著的进展。在构建和训练深度学习模型的过程中,深度
    的头像 发表于 07-02 14:04 972次阅读

    深度学习模型训练过程详解

    深度学习模型训练是一个复杂且关键的过程,它涉及大量的数据、计算资源和精心设计的算法。训练一个深度学习模型,本质上是通过优化算法调整模型参数,使模型能够更好地拟合数据,提高
    的头像 发表于 07-01 16:13 1268次阅读

    三电极无铅氧气传感器助力制氧机设计

    确保患者得到充足的氧气供应。 心力衰竭人群:心力衰竭时,心脏无法将足够的血液泵入体内,可能导致肺部充血和低氧血症。制氧机能够缓解患者的低氧状况,提供必要的氧气支持。 某些睡眠呼吸暂停综合征人群:中度到
    发表于 06-26 14:46

    Amazec Photonics完成150万欧元种子轮融资用于微创检测设备开发

    Amazec Photonics开发新一代基于光子学的人体循环系统和心力衰竭检测技术。
    的头像 发表于 02-21 10:55 1499次阅读