0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

通过深度学习模型预测转移性癌症风险

星星科技指导员 来源:NVIDIA 作者:Michelle Horton 2022-04-08 09:39 次阅读

发表于细胞系统,通过检测人眼无法检测到的细胞特征,创建了一个能够预测黑色素瘤是否会扩散的深度学习模型。

“我们现在有了一个通用的框架,使我们能够采集组织样本并预测细胞内驱动疾病的机制,这些机制目前以任何其他方式都无法实现,”资深作者、 Patrick E 。在德克萨斯大学西南部的基础生物医学科学中,哈格蒂是一位杰出的主席。

黑色素瘤是由黑素细胞变化引起的一种严重的皮肤癌,如果不及早发现,它是所有皮肤癌中最有可能扩散的一种。快速识别它有助于医生制定有效的治疗计划,早期诊断的 5 年生存率约为 99% 。

医生通常通过活组织检查、血液检查或 X 光、 CT 和 PET 扫描来确定黑色素瘤的阶段,以及黑色素瘤是否已经扩散到身体的其他部位,即转移。细胞行为的变化可能暗示黑色素瘤扩散的可能性,但这些变化太微妙,专家无法观察到。

研究人员认为,使用人工智能来帮助确定黑色素瘤的转移潜能可能非常有价值,但到目前为止,人工智能模型还不能解释这些细胞特征。

“我们提出了一种结合无监督深度学习和有监督传统机器学习算法,以及生成图像模型,以可视化预测转移潜能的特定细胞行为。也就是说,我们将人工智能获得的 i NSight 映射回人类智能可以解释的数据线索,”研究合著者、犹他州西南大学生物信息学助理教授安德鲁·杰米森说。

研究人员利用 7 名转移性黑色素瘤患者的肿瘤图像,在皮氏培养皿中收集了 12000 多个单个黑色素瘤细胞的延时数据集。研究人员使用深度学习算法识别不同的细胞行为,得到了大约 1700000 张原始图像。

基于这些特征,研究小组随后“反向工程”了一个深度卷积神经网络,能够梳理出侵袭性黑色素瘤细胞的物理特性,并预测细胞是否具有高转移潜能。

实验在 UT 西南医学中心生物高性能混凝土集群上进行,并使用CUDA – 加速 NVIDIA V100 Tensor Core GPU。他们在 170 万个细胞图像上训练了多种深度学习模型,以可视化和探索从超过 5 TB 原始显微镜数据开始的海量数据集。

研究人员随后追踪了黑色素瘤细胞在小鼠体内的扩散情况,并测试了这些特异性预测因子是否会导致高转移性细胞。他们发现被归为高转移性的细胞类型在整个动物体内扩散,而被归为低转移性的细胞则没有。

在将这项研究应用于医疗环境之前,还有更多的工作要做。研究小组还指出,这项研究提出了一个问题,即这是否适用于其他癌症,或者黑色素瘤转移是否属于异常情况。

Jamieson 说:“研究结果似乎表明,转移潜能,至少是黑色素瘤的转移潜能,是由细胞自主决定的,而不是由环境因素决定的。”。

这项研究的应用还可以超越癌症,改变其他疾病的诊断。

关于作者

Michelle Horton 是 NVIDIA 的高级开发人员通信经理,拥有通信经理和科学作家的背景。她在 NVIDIA 为开发者博客撰文,重点介绍了开发者使用 NVIDIA 技术的多种方式。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4775

    浏览量

    100921
  • NVIDIA
    +关注

    关注

    14

    文章

    5026

    浏览量

    103297
  • 深度学习
    +关注

    关注

    73

    文章

    5508

    浏览量

    121312
收藏 人收藏

    评论

    相关推荐

    深度学习模型的鲁棒优化

    深度学习模型的鲁棒优化是一个复杂但至关重要的任务,它涉及多个方面的技术和策略。以下是一些关键的优化方法: 一、数据预处理与增强 数据清洗 :去除数据中的噪声和异常值,这是提高
    的头像 发表于 11-11 10:25 313次阅读

    GPU深度学习应用案例

    GPU在深度学习中的应用广泛且重要,以下是一些GPU深度学习应用案例: 一、图像识别 图像识别是深度学习
    的头像 发表于 10-27 11:13 422次阅读

    FPGA加速深度学习模型的案例

    FPGA(现场可编程门阵列)加速深度学习模型是当前硬件加速领域的一个热门研究方向。以下是一些FPGA加速深度学习
    的头像 发表于 10-25 09:22 277次阅读

    AI大模型深度学习的关系

    AI大模型深度学习之间存在着密不可分的关系,它们互为促进,相辅相成。以下是对两者关系的介绍: 一、深度学习是AI大
    的头像 发表于 10-23 15:25 962次阅读

    FPGA做深度学习能走多远?

    的应用场景。 • 可重构:在深度学习高速迭代的情况下,FPGA 比一些专用芯片(如 ASIC)具有更强的灵活性。当深度学习算法或
    发表于 09-27 20:53

    【《大语言模型应用指南》阅读体验】+ 基础知识学习

    一些局限性。例如,模型可能无法完全理解文本中的深层含义和语境信息;同时,由于训练数据可能存在偏差和噪声,生成的答案也可能存在不准确或误导的情况。 总结以下,大语言模型通过深度
    发表于 08-02 11:03

    深度学习模型有哪些应用场景

    深度学习模型作为人工智能领域的重要分支,已经在多个应用场景中展现出其巨大的潜力和价值。这些应用不仅改变了我们的日常生活,还推动了科技进步和产业升级。以下将详细探讨深度
    的头像 发表于 07-16 18:25 2083次阅读

    深度学习模型量化方法

    深度学习模型量化是一种重要的模型轻量化技术,旨在通过减少网络参数的比特宽度来减小模型大小和加速推
    的头像 发表于 07-15 11:01 513次阅读
    <b class='flag-5'>深度</b><b class='flag-5'>学习</b><b class='flag-5'>模型</b>量化方法

    深度学习模型中的过拟合与正则化

    深度学习的广阔领域中,模型训练的核心目标之一是实现对未知数据的准确预测。然而,在实际应用中,我们经常会遇到一个问题——过拟合(Overfitting)。过拟合是指
    的头像 发表于 07-09 15:56 1034次阅读

    深度学习中的时间序列分类方法

    时间序列分类(Time Series Classification, TSC)是机器学习深度学习领域的重要任务之一,广泛应用于人体活动识别、系统监测、金融预测、医疗诊断等多个领域。随
    的头像 发表于 07-09 15:54 1049次阅读

    深度学习中的模型权重

    深度学习这一充满无限可能的领域中,模型权重(Weights)作为其核心组成部分,扮演着至关重要的角色。它们不仅是模型
    的头像 发表于 07-04 11:49 1525次阅读

    深度学习的典型模型和训练过程

    深度学习作为人工智能领域的一个重要分支,近年来在图像识别、语音识别、自然语言处理等多个领域取得了显著进展。其核心在于通过构建复杂的神经网络模型,从大规模数据中自动
    的头像 发表于 07-03 16:06 1568次阅读

    深度学习模型训练过程详解

    深度学习模型训练是一个复杂且关键的过程,它涉及大量的数据、计算资源和精心设计的算法。训练一个深度学习模型
    的头像 发表于 07-01 16:13 1380次阅读

    深度学习模型优化与调试方法

    深度学习模型在训练过程中,往往会遇到各种问题和挑战,如过拟合、欠拟合、梯度消失或爆炸等。因此,对深度学习
    的头像 发表于 07-01 11:41 881次阅读

    一种利用光电容积描记(PPG)信号和深度学习模型对高血压分类的新方法

    层(Convolution、ReLU、LRN、Pooling)+3个全连接层组成.它被认为是深度学习领域的突破架构,是对传统深度学习
    发表于 05-11 20:01