0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

利用人工智能技术预测蛋白质的结构

星星科技指导员 来源:NVIDIA 作者:Michelle Horton 2022-04-08 10:25 次阅读

一组来自 Alphabet ‘ sDeepmind 的计算生物学家利用人工智能从蛋白质的氨基酸序列中预测蛋白质的结构,解开了一个困扰科学家数十年的谜团。

甚至不到一年后,一项新的研究提供了一个更强大的模型,能够在一台游戏电脑上在短短 10 分钟内计算出蛋白质结构。

The research 来自华盛顿大学( UW )的科学家们承诺加快药物研发,这可以解开治疗癌症等疾病的方法。

存在于身体的每一个细胞中,蛋白质在许多过程中发挥作用,如凝血、激素调节、免疫系统反应、视力以及细胞和组织修复。由长链氨基酸相互作用形成折叠的三维结构组成,蛋白质的形状决定其功能。

未折叠或错误折叠的蛋白质也被认为会导致退化性疾病,包括囊性纤维化、阿尔茨海默病、帕金森病和亨廷顿病。了解和预测一种蛋白质结构是如何形成的,可以帮助科学家为许多此类疾病设计有效的干预措施。

华盛顿大学的研究人员通过创建一个同时考虑蛋白质序列模式、氨基酸相互作用和可能的三维结构的三轨神经网络,开发了 RoseTTAFold 模型。

为了训练模型,研究小组使用不连续的蛋白质片段,有 260 个独特的氨基酸元素。具有the cuDNN – 加速 PyTorch 深度学习框架,以及 NVIDIA Geforce 2080 GPU ,这些信息在深度学习模型中来回流动。然后这个网络就可以推断出蛋白质的化学成分及其折叠结构。

“ RoseTTAFold 的端到端版本需要在 RTX 2080 GPU 上大约 10 分钟来生成少于 400 个残基的蛋白质的骨架坐标。研究人员在研究报告中写道:“ pyRosetta 版本需要 5 分钟对单个 NVIDIA RTX 2080 GPU 进行网络计算,用 15 个 CPU 核生成所有原子结构需要 1 小时。”。

pYYBAGJPnRWAKKivAAQqltAfYKE508.png

预测蛋白质结构及其基本真值。信贷: UW / Baek 等人

这个工具不仅可以快速预测蛋白质,而且可以在有限的输入下进行预测。它也有能力超越简单的结构进行计算,预测由几个结合在一起的蛋白质组成的复合物。更复杂的模型在 24G 上计算大约 30 分钟 NVIDIA Titan RTX 。

任何有兴趣提交蛋白质序列的人都可以使用公共服务器。这个 源代码 科学界也可以免费获得。

“就在上个月,超过 4500 种蛋白质被提交到我们新的网络服务器上,我们通过 GitHub 网站提供了 RoseTTAFold 代码。我们希望这个新工具将继续有益于整个研究社区,”华盛顿大学蛋白质研究所的博士后学者 Minkyung Baek 说。

关于作者

Michelle Horton 是 NVIDIA 的高级开发人员通信经理,拥有通信经理和科学作家的背景。她在 NVIDIA 为开发者博客撰文,重点介绍了开发者使用 NVIDIA 技术的多种方式。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • NVIDIA
    +关注

    关注

    14

    文章

    4940

    浏览量

    102818
  • 人工智能
    +关注

    关注

    1791

    文章

    46872

    浏览量

    237595
收藏 人收藏

    评论

    相关推荐

    嵌入式和人工智能究竟是什么关系?

    了重要作用。在未来,随着嵌入式系统和人工智能技术的不断进步,我们可以预见更多创新应用的出现,为社会发展和生活品质的提升带来更多可能性。
    发表于 11-14 16:39

    《AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    探讨了人工智能如何通过技术创新推动能源科学的进步,为未来的可持续发展提供了强大的支持。 首先,书中通过深入浅出的语言,介绍了人工智能在能源领域的基本概念和技术原理。这使得我对
    发表于 10-14 09:27

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    研究的进程。从蛋白质结构预测到基因测序与编辑,再到药物研发,人工智能技术在生命科学的各个层面都发挥着重要作用。特别是像AlphaFold这样的工具,成功解决了困扰生物学界半个多世纪的
    发表于 10-14 09:21

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    ,无疑为读者铺设了一条探索人工智能(AI)如何深刻影响并推动科学创新的道路。在阅读这一章后,我深刻感受到了人工智能技术在科学领域的广泛应用潜力以及其带来的革命性变化,以下是我个人的学习心得: 1.
    发表于 10-14 09:12

    差示扫描量热仪测试蛋白质的应用案例

    过程中可能出现的吸热或放热峰,这些峰对应于角蛋白分子链的运动、微纤维的熔融、或蛋白质的变性等现象。    通过对比受延展和热处理前后的DSC曲线,研究人员可以了解这些处理对角蛋白复合物的热性质和
    的头像 发表于 10-09 15:45 153次阅读
    差示扫描量热仪测试<b class='flag-5'>蛋白质</b>的应用案例

    risc-v在人工智能图像处理应用前景分析

    RISC-V和Arm内核及其定制的机器学习和浮点运算单元,用于处理复杂的人工智能图像处理任务。 四、未来发展趋势 随着人工智能技术的不断发展和普及,RISC-V在人工智能图像处理领域的应用前景将更加广阔。以下
    发表于 09-28 11:00

    创客中国AIGC专题赛冠军天鹜科技:AI蛋白质设计引领者

    源自自然的蛋白质与现代科技的创新精神相结合,打造蛋白质设计与应用的新范式。”在江西南昌举办的第九届“创客中国”生成式人工智能(AIGC)中小企业创新创业大赛中,上海天鹜科技有限公司(下称“天鹜科技”)分享了这一理念。 天鹜科技是
    的头像 发表于 09-18 12:04 213次阅读
    创客中国AIGC专题赛冠军天鹜科技:AI<b class='flag-5'>蛋白质</b>设计引领者

    EvolutionaryScale推出基于NVIDIA GPU模型的新型蛋白质研究方案

    EvolutionaryScale 于 6 月 25 日发布了第三代 ESM 模型 ESM3,该模型可同时对蛋白质的序列、结构和功能进行推理,为蛋白质研发工程师提供了一个可编程的平台。
    的头像 发表于 08-23 16:45 608次阅读

    报名开启!深圳(国际)通用人工智能大会将启幕,国内外大咖齐聚话AI

    8月28日至30日,2024深圳(国际)通用人工智能大会暨深圳(国际)通用人工智能产业博览会将在深圳国际会展中心(宝安)举办。大会以“魅力AI·无限未来”为主题,致力于打造全球通用人工智能领域集产品
    发表于 08-22 15:00

    FPGA在人工智能中的应用有哪些?

    定制化的硬件设计,提高了硬件的灵活性和适应性。 综上所述,FPGA在人工智能领域的应用前景广阔,不仅可以用于深度学习的加速和云计算的加速,还可以针对特定应用场景进行定制化计算,为人工智能技术的发展提供有力支持。
    发表于 07-29 17:05

    利用微流控探针诱导的化学质膜穿孔,实现单细胞胞内蛋白质递送

    将小分子、核酸、蛋白质和药物导入细胞是监测和了解细胞行为以及生物功能的重要途径。
    的头像 发表于 05-28 10:11 507次阅读
    <b class='flag-5'>利用</b>微流控探针诱导的化学质膜穿孔,实现单细胞胞内<b class='flag-5'>蛋白质</b>递送

    洪亮团队在生信期刊JCIM发布最新成果,蛋白质工程迈入通用人工智能时代

    发表最新研究成果:“基于微环境感知图神经网络构建指导蛋白质定向进化的通用人工智能”(Protein Engineering with Lightweight Graph Denoising Neural
    的头像 发表于 04-19 17:42 539次阅读
    洪亮团队在生信期刊JCIM发布最新成果,<b class='flag-5'>蛋白质</b>工程迈入通<b class='flag-5'>用人工智能</b>时代

    人工智能技术的优势有哪些

    人工智能技术的优势
    的头像 发表于 01-19 15:58 3037次阅读

    对新辅助TCHP治疗响应的HER2+乳腺癌空间蛋白质组特征

    GeoMx IPA可以实现对组织中任何区域(如肿瘤区域、免疫交界区域、肿瘤微环境和正常基质区域等)中的570多种蛋白质进行空间原位的表达检测,快速发现新的蛋白质生物标记物和药物靶点。
    的头像 发表于 12-26 16:52 847次阅读
    对新辅助TCHP治疗响应的HER2+乳腺癌空间<b class='flag-5'>蛋白质</b>组特征

    人工智能驱动蛋白质设计取得重大突破,人类健康和环境监测有望受益

     据华盛顿大学化学与生物工程系的David Baker教授透露,其领导的研究小组整合了深度学习算法和序列设计工具ProteinMPNN,从而实现了高效的蛋白质功能性设计。
    的头像 发表于 12-20 14:32 727次阅读