0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

关于低噪声放大器的基本知识

汉芯国科 来源:汉芯国科 作者:汉芯国科 2022-04-12 15:00 次阅读

低噪声放大器(low noise amplifier)是噪声系数很低的放大器。一般用作各类无线电接收机的高频或中频前置放大器,以及高灵敏度电子探测设备的放大电路。

成都汉芯国科集成技术有限公司(chengdu chinesechip)是一家无线通信集成电路科技公司、在射频微波集成电路及多芯片组件的设计、制造处于行业领先地位。

汉芯国科在中国多个区域建有标准产品线、制造和销售1000多个产品型号。包括业界最小尺寸的真对数放大器(5mmX5mm)、低噪声放大器(LNA、NF=0.20dB)、压控振荡器(VCO)、开关(SWITCH)、低插损滤波器(Low Loss filter)、电源控制(DC-control) ,高线性功率放大器(H-L PA),上电时序控制电路(Power timing sequence control circuit)和子系统。

同时承接先进系统封装(SiP系统级封装)定制解决方案,为高端设备制造商提供核心竞争力的高性能、高质量产品。

产品广泛应用于广播、通信、电台、蜂窝无线、有线电视、卫星通信、医疗设备、仪器测量等。

为客户设计出更符合需求的产品,为客户提供芯片国产化替代服务。,提供最有价值的服务,成为你可靠、信赖的专业伙伴,不断创造价值,同客户携手前行。

有关低噪声放大器的讨论常常关注于RF/无线应用,但实际应用中,噪声对于低频模拟产品(如数据转换器缓冲、应变仪信号放大和麦克风前置放大器)也有很大影响,是一项重要的考虑因素。低噪声放大器的主要技术指标包括:噪声系数、功率增益、输入输出驻波比、反射系数和动态范围等。由于设计低噪声放大器时,在兼顾其他各指标的同时,主要考虑噪声系数。

影响放大器噪声性能的参数中最重要的两个参数是:电压噪声和电流噪声。电压噪声是指在没有它噪声干扰的情况下,放大器输入短路时出现在输入端的电压波动。电流噪声是指在没有其它噪声干扰的情况下,放大器输入开路时出现在输入端的电流波动。

描述放大器噪声的典型指标是噪声密度,也称作点噪声。电压噪声密度单位为nV/,电流噪声密度通常表示为pA/。在低噪声放大器数据资料中可以找到这些参数,而且,一般给出两种频率下的数值:一个是低于200Hz的闪烁噪声;另一个是在1kHz通带内的噪声。简单起见,这些测量值以放大器输入端为参考,不需要考虑放大器增益。

图1所示为电压噪声密度与频率的对应关系曲线。噪声曲线与两个主要的噪声成份有关:闪烁噪声和散粒噪声。闪烁噪声是所有线性器件固有的随机噪声,也称作1/f 噪声,因为噪声振幅与频率成反比。闪烁噪声通常是频率低于200Hz时的主要噪声源,如图1所示。1/f角频率是指噪声大小基本相同、不受频率变化影响的起始频率。散粒噪声是流过正向偏置pn结的电流波动所造成的白噪声,也出现在该频段。值得注意的是:电压噪声的1/f角频率与电流噪声的1/f角频率可能会不同。

关于低噪声放大器的基本知识

图1. 电压噪声密度与频率的关系曲线,主要受两种噪声源的影响:闪烁噪声和散粒噪声。闪烁噪声或1/f噪声与频率成反比,是频率低于200Hz时的主要噪声源。

放大器电路的总噪声取决于放大器本身、外部电路阻抗、增益、电路带宽和环境温度等参数。电路的外部电阻所产生的热噪声也是总噪声的一部分。图2所示为放大器和相关噪声成份的实例。

关于低噪声放大器的基本知识

图2. 放大电路的源阻抗决定占主导地位的噪声类型,源阻抗升高时,电流噪声为主要来源。

审核编辑:汤梓红

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 放大器
    +关注

    关注

    143

    文章

    13534

    浏览量

    212977
  • 低噪声
    +关注

    关注

    0

    文章

    203

    浏览量

    22812
  • 汉芯国科
    +关注

    关注

    1

    文章

    8

    浏览量

    575
收藏 人收藏

    评论

    相关推荐

    有几个关于放大器的问题求解

    低噪声放大器选择问题 在有大的共模电压的情况下,应选择仪表放大器,但大的共模电压是否是选择仪表放大器的最主要标准? 在没有大共模电压的情况下,采用低噪声放大器搭的电路是否可以做到比采
    发表于 09-14 06:01

    低噪声放大器的第一级放大电路要尽可能的放大,为什么?

    为什么低噪声放大器的第一级放大电路要尽可能的放大?
    发表于 08-30 07:40

    低噪声放大器的工作原理和技术指标

    低噪声放大器(Low Noise Amplifier, LNA)是一种在放大信号的同时尽量抑制自身和外部噪声的电子设备,广泛应用于无线通信、卫星通信、雷达、无线电视和手机等领域。下面将详细阐述
    的头像 发表于 08-16 17:09 967次阅读

    低噪声放大器的原理和参数是什么 前置微小信号放大器

    低噪声放大器是一种用于增加信号幅度的电路,主要用于无线通信、卫星通信、雷达、无线电视、手机等应用中,用于提高系统灵敏度和扩大接收范围。它的主要作用是在信号传输链路中起到放大弱信号的作用,同时尽可能
    的头像 发表于 07-19 11:50 493次阅读
    <b class='flag-5'>低噪声放大器</b>的原理和参数是什么 前置微小信号<b class='flag-5'>放大器</b>

    应用于车载GPS导航的低噪声放大器芯片数据手册:AT2659S

    省了不少。 关于AT2659S,它是一款具有低功耗、高增益、低噪声系数的低噪声放大器芯片,工作频率覆盖1550MHz-1615MHz,且支持L1频段多模式全球微星定位。它还可以应用在北斗二代、GPS
    发表于 07-15 16:37

    低噪声放大器和功率放大器的区别

    在电子通信和信号处理领域,放大器是不可或缺的电子元件。其中,低噪声放大器(Low Noise Amplifier,简称LNA)和功率放大器(Power Amplifier)作为两种常见的放大器
    的头像 发表于 05-31 18:14 5566次阅读

    什么是低噪声放大器?它有哪些分类?

    在现代电子通信和信号处理领域,信号的放大是一个至关重要的环节。然而,在放大信号的过程中,往往伴随着噪声的产生,这会影响信号的质量和系统的性能。为了解决这个问题,低噪声放大器(Low N
    的头像 发表于 05-31 18:08 4445次阅读

    低噪声放大器的工作原理和主要参数

    低噪声放大器(Low Noise Amplifier,简称LNA)是一种用于增加信号幅度而又尽量减小噪声的电子设备。在现代通信、生物医学、天文学等领域中,低噪声放大器因其优异的性能而得到了广泛的应用。本文将对
    的头像 发表于 05-28 15:54 2421次阅读

    低噪声放大器与功率放大器的区别

    低噪声放大器(LNA)和功率放大器(PA)是两种在无线通信和电子系统中扮演关键角色的放大器
    的头像 发表于 05-23 17:47 840次阅读

    单边低噪声放大器设计方案

    在接收器应用中,信号链中的第一个放大器对整个系统的噪声性能起着主导作用。该放大器应表现出尽可能低的噪声系数,同时提供可接受的高功率增益。因此,该低噪
    的头像 发表于 02-25 10:17 796次阅读
    单边<b class='flag-5'>低噪声放大器</b>设计方案

    低噪声放大器QFN封装简介

    ZRL1304LP3是一款低功耗低噪声放大器芯片,工作频率覆盖17~24GHz。该低噪声放大器可提供大于22.5dB的增益,带内噪声系数典型值为1.7dB,当Vd供+5V电压时可提供3.5dBm
    发表于 01-16 12:26 398次阅读
    <b class='flag-5'>低噪声放大器</b>QFN封装简介

    如何降低低噪声放大器的工作电流

    要降低低噪声放大器的工作电流,可以采取以下几种方法
    的头像 发表于 01-05 18:13 622次阅读

    低噪声放大器和高功放的区别

    低噪声放大器和高功率放大器是两种不同类型的放大器,它们的主要区别在于其设计和应用方面
    的头像 发表于 01-05 18:12 768次阅读

    RF2373低噪声放大器/驱动放大器Qorvo

    Qorvo的RF2373是款具备高动态范围的低噪声放大器,致力于Wi-Fi和数字蜂窝状应用需求设计。RF2373在数字用户模块的传输链中作为优异的前端低噪声放大器或驱动放大器,其中低传输噪声
    发表于 12-28 14:32

    为什么低噪声放大器的第一级要尽可能的放大呀?

    为什么低噪声放大器的第一级要尽可能的放大
    发表于 11-21 08:01