0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

NVIDIA GPU和联想助力学校部署应用基础架构

星星科技指导员 来源:NVIDIA 作者:NVIDIA 2022-04-13 11:41 次阅读

案例简介

• 江西师范大学数字产业学院,利用搭载了NVIDIA V100和 T4 Tensor Core GPU的联想ThinkSystem SR650和SR670服务器高性能计算集群,帮助学生和教师开展深度学习突破性研究。

• 本案例主要应用到NVIDIA Tesla V100 , NVIDIA T4 Tensor Core GPU ,NVIDIA RIVA平台、NVIDIA NEMO模型训练平台。

客户简介及应用背景

江西师范大学数字产业学院是江西省的第一所数字产业学院,学院于2021年成立,专注于计算机科学与技术、人工智能、大数据、物联网及动画等领域的教学和研究。

作为新成立的机构,江西师范大学数字产业学院计划从零开始构建一套行业顶尖的数字化基础架构,而这需要从设计并建立全新的数据中心开始。

客户挑战

“联想和NVIDIA在人工智能和传统高性能计算领域实力雄厚,在我们的评估中获得了最高的技术评分。”

——江西师范大学数字产业学院副院长

在为新的数据中心选择服务器和存储基础架构时,江西师范大学数字产业学院主要考虑两大需求。

首先,它需要一个强大的平台支持日常运营。该平台将运行学院的学生信息、图书馆、教室和校园系统,而且需要足够的灵活性和可扩展性,在学院不断发展壮大、招生人数增多的情况下实现快速扩展。

其次,它还需要一套强大的高性能计算基础架构,帮助教师和学生开展突破性科研工作。江西师范大学数字产业学院设立了多个和人工智能、深度学习相关的优势学科和科研项目。因此,找到一种不仅能够支持CPU密集型工作负载,同时还能支持GPU密集型工作负载的通用架构为教学和科研的必要的实验环境尤为重要。

由于学院可用于IT管理的资源非常有限,这两个平台都应当非常可靠且易于管理。此外,考虑到随着科研工作的逐步深入,数据量预计将迅速增加,强大的数据存储和数据保护功能必不可少。

应用方案

联想帮助江西师范大学数字产业学院设计并部署了一套基于两大主要解决方案的基础架构,这两套方案协同运行,能够对学院的运营系统和科研项目进行全面管理。“

首先,学院采用联想ThinkAgile AH超融合解决方案作为统一平台,支持日常行政管理、教学和科研管理等企业级应用。超融合的部署意味着学院可以根据需要随时添加计算和存储资源来支持业务增长。联想ThinkAgile AH还是为数不多能够支持异构设备扩容的超融合解决方案,以最大化的资源利用和灵活性充分保护学院的投资。

其次,利用联想ThinkSystem SR650和SR670服务器组成的高性能计算集群,学院搭建了一个可供各学科完成教学和科研工作的IT环境。这些服务器搭载了CPU和NVIDIA V100及T4 Tensor Core GPU。NVIDIA V100 GPU专门设计用于加速人工智能和高性能计算工作负载,可提供比传统CPU高32倍的训练吞吐量。

凭借4颗NVIDIA V100 GPU和18颗NVIDIA T4 Tensor Core GPU,联想高性能计算集群可交付出色的性能,满足深度学习和计算机视觉工作负载的苛刻要求。该系统可支持多种常见的深度学习框架(如Caffe和TensorFlow)以及容器技术。

与此同时,联想的LiCO 平台(Lenovo Intelligent Computing Orchestration)作为集群管理器,提供了一个简单且直观的操作界面,使集群资源对研究人员垂手可得,并帮助非技术用户消除复杂性。同时,联想LiCO平台能够实现细粒度资源监控,和CPU、GPU资源的灵活分配。

最后,学院通过联想ThinkSystem DM3000H和DE6000H存储系统以及DPA24000备份一体机,实现对核心数据的归档、备份和保护。这种并行文件系统还可帮助包括科研人员在内的所有用户进行统一的数据访问。

使用效果及影响

“我们的学生和导师非常期待使用联想和NVIDIA的高性能计算平台开展突破性科学研究。这将有助于我们推动城市的数字产业的发展,实现教育链、创新链、产业链的深度融合。”

——江西师范大学数字产业学院副院长

新平台就绪后,江西师范大学数字产业学院具备了所需的工具帮助教师和学生开展一流的科研工作。

通过轻松访问高性能计算工作负载所需的CPU和GPU资源,学院的学生和科研人员将能够有效地规划、实施和管理项目而不需要额外的技术帮助,进而减轻IT技术人员的负担。利用联想LiCO平台,只需简单点击鼠标就可以分配资源,部署深度学习应用和训练模型。技术和研究人员的时间和精力能够释放出来,帮助学院集中精力于学术工作,而不必被淹没在繁琐的部署、运营或系统维护任务中。

基于NVIDIA GPU的强大处理能力,可以很好的支持人工智能和深度学习研究项目。 用户友好的高性能计算集群管理,使学生和科研人员如虎添翼 。小维护工作量的基础架构,提供自动备份,可轻松扩展。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 联想
    +关注

    关注

    3

    文章

    2590

    浏览量

    62718
  • NVIDIA
    +关注

    关注

    14

    文章

    4929

    浏览量

    102791
  • gpu
    gpu
    +关注

    关注

    28

    文章

    4700

    浏览量

    128677
收藏 人收藏

    评论

    相关推荐

    华迅光通AI计算加速800G光模块部署

    ,都需要更多的光模块来进行光纤通信。对于使用gpu的广泛AI训练应用,在NVIDIA的DGX H100服务器中,集成了8个H100 gpu,对计算和存储网络的需求相当于大约12个800G光模块和18个
    发表于 11-13 10:16

    【「算力芯片 | 高性能 CPU/GPU/NPU 微架构分析」阅读体验】--了解算力芯片GPU

    本篇阅读学习第七、八章,了解GPU架构演进及CPGPU存储体系与线程管理 █从图形到计算的GPU架构演进 GPU图像计算发展 ●从三角形开始
    发表于 11-03 12:55

    AMD与NVIDIA GPU优缺点

    在图形处理单元(GPU)市场,AMD和NVIDIA是两大主要的竞争者,它们各自推出的产品在性能、功耗、价格等方面都有着不同的特点和优势。 一、性能 GPU的性能是用户最关心的指标之一。在高端市场
    的头像 发表于 10-27 11:15 436次阅读

    NVIDIA NIM助力企业高效部署生成式AI模型

    Canonical、Nutanix 和 Red Hat 等厂商的开源 Kubernetes 平台集成了 NVIDIA NIM,将允许用户通过 API 调用来大规模地部署大语言模型。
    的头像 发表于 10-10 09:49 358次阅读

    暴涨预警!NVIDIA GPU供应大跳水

    gpu
    jf_02331860
    发布于 :2024年07月26日 09:41:42

    进一步解读英伟达 Blackwell 架构、NVlink及GB200 超级芯片

    ,第五代NVLink、InfiniBand网络和NVIDIA Magnum IO™软件的支持,确保企业和广泛GPU计算集群的高效可扩展性。 HGX B200 深度学习推理能力 英伟达第五代 NVLink
    发表于 05-13 17:16

    NVIDIA推出两款基于NVIDIA Ampere架构的全新台式机GPU

    两款 NVIDIA Ampere 架构 GPU 为工作站带来实时光线追踪功能和生成式 AI 工具支持。
    的头像 发表于 04-26 11:25 585次阅读

    利用NVIDIA组件提升GPU推理的吞吐

    本实践中,唯品会 AI 平台与 NVIDIA 团队合作,结合 NVIDIA TensorRT 和 NVIDIA Merlin HierarchicalKV(HKV)将推理的稠密网络和热 Embedding 全置于
    的头像 发表于 04-20 09:39 637次阅读

    RTX 5880 Ada Generation GPU与RTX™ A6000 GPU对比

    NVIDIA RTX™ 5880 Ada Generation GPU 是目前国内重量级 GPU,基于全新 NVIDIA Ada Lovelace
    的头像 发表于 04-19 10:20 1583次阅读
    RTX 5880 Ada Generation <b class='flag-5'>GPU</b>与RTX™ A6000 <b class='flag-5'>GPU</b>对比

    全新NVIDIA RTX A400和A1000 GPU全面加强AI设计与生产力工作流

    两款 NVIDIA Ampere 架构 GPU 为工作站带来实时光线追踪功能和生成式 AI 工具支持。
    的头像 发表于 04-18 10:29 483次阅读

    学校能源节能管控系统

    、智能分析与管理,助力学校构建绿色、节能、高效的能源使用环境。下面,我们将对学校能源节能管控系统的核心功能和综合效益做一个全面介绍。 核心功能 1. 实时能源监测:系统能够对学校内部的各类能源使用情况(如水、电、气等
    的头像 发表于 04-10 14:45 408次阅读
    <b class='flag-5'>学校</b>能源节能管控系统

    物联网如何助力学校管理升级

    物联网(IoT)在学校管理中可以发挥重要作用,为学校提供更高效、智能的管理方式。以下是物联网如何助力学校管理升级的一些方面: 一、设备智能化管理:学校内的设备可以通过物联网连接到互联网
    的头像 发表于 03-05 10:13 330次阅读

    NVIDIA将在今年第二季度发布Blackwell架构的新一代GPU加速器“B100”

    根据各方信息和路线图,NVIDIA预计会在今年第二季度发布Blackwell架构的新一代GPU加速器“B100”。
    的头像 发表于 03-04 09:33 1247次阅读
    <b class='flag-5'>NVIDIA</b>将在今年第二季度发布Blackwell<b class='flag-5'>架构</b>的新一代<b class='flag-5'>GPU</b>加速器“B100”

    NVIDIA的Maxwell GPU架构功耗不可思议

    整整10年前的2013年2月19日,NVIDIA正式推出了新一代Maxwell GPU架构,它有着极高的能效,出场方式也非常特别。
    的头像 发表于 02-19 16:39 963次阅读
    <b class='flag-5'>NVIDIA</b>的Maxwell <b class='flag-5'>GPU</b><b class='flag-5'>架构</b>功耗不可思议

    揭秘GPU: 高端GPU架构设计的挑战

    在计算领域,GPU(图形处理单元)一直是性能飞跃的代表。众所周知,高端GPU的设计充满了挑战。GPU架构创新,为软件承接大模型训练和推理场景的人工智能计算提供了持续提升的硬件基础。
    的头像 发表于 12-21 08:28 848次阅读
    揭秘<b class='flag-5'>GPU</b>: 高端<b class='flag-5'>GPU</b><b class='flag-5'>架构</b>设计的挑战