0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

使用NVIDIA Clara AGX深度学习减少MRI扫描次数

星星科技指导员 来源:NVIDIA 作者:NVIDIA 2022-04-17 16:15 次阅读

磁共振成像( MRI )是一种有用的软组织或分子扩散成像技术。然而,获取 MR 图像的扫描时间可能相当长。有几种方法可以用来减少扫描时间,包括矩形视场( RFOV )、部分傅里叶成像和采样截断。这些方法要么导致信噪比( SNR )降低,要么导致分辨率降低。有关更多信息,请参阅k 空间教程:更好地理解 k 空间的 MRI 教育工具。

当使用采样截断技术以减少扫描和数据传输时间时,吉布斯现象也称为振铃或截断伪影,会出现在结果图像中。通常,通过平滑图像来消除吉布斯现象,从而降低图像分辨率。

在这篇文章中,我们探索了一种使用 NVIDIA Clara AGX 开发者套件的深度学习方法,以消除磁共振图像中的吉布斯现象和噪声,同时保持高图像分辨率。

信号可以表示为频率和相位变化的正弦波的无限和。 MR 图像通过使用相对较少的 h ARM 电子近似,从而导致吉布斯现象的存在。图 1 显示了一个类似的一维情况,即仅用几个 h ARM 电子近似方波,右侧 MRI 模型中的吉布斯现象。

poYBAGJbzKSAH5onAADVpqwjTNQ793.png

图 1 。(左)截断伪影,也称为吉布斯现象,仅使用五个 h ARM 源近似方波时显示:Wikipedia. (右)二维 MRI 模型中显示的吉布斯现象。

数据集和模型

我们扩展了现有的用于 Gibbs 和噪声消除的深度学习方法 dldegibbs 的工作。有关更多信息,请参阅扩散磁共振成像中 Gibbs 神经网络的训练与去噪。该白皮书的代码在/mmuckley/dldegibbs GitHub repo 中。

在他们的工作中,大约 130 万张模拟吉布斯现象和高斯噪声的 ImageNet 图像被用作训练数据。在我们的项目中,我们测试了 Muckley 等人开发的一些预训练 dldegibbs 模型,并使用开放图像数据集训练了我们自己的模型。我们最后用 MRI 扩散数据测试了不同的模型。

为什么要模拟吉布斯现象?

与其他网络相比,使用 dldegibbs 的一个好处是它不需要访问原始 MRI 数据和系统参数。该数据很难获得,因为该数据的存储要求很高,并且在图像重建后通常不会保留该数据。

另一个好处是不需要专有信息或与供应商签署研究协议。此外,还可以节省收集和分发医疗数据的时间,这可能是一项挑战。使用异构数据集(如 ImageNet 或 Open Images )对模型进行训练有可能使该方法应用于其他 MRI 序列或成像模式,因为训练数据本质上是对象不可知的。

dldegibbs 的数据加载程序为每个加载的映像创建两个映像:一个训练映像和一个目标映像。在傅里叶域中模拟原始图像上的吉布斯现象生成训练图像。将调整原始图像的大小并将其用作目标图像。数据加载程序包括标准数据增强方法(随机翻转、裁剪),然后是随机相位模拟和椭圆裁剪。接下来,对原始图像进行 FFT 处理,进行 Gibbs 裁剪,添加复高斯噪声,并模拟部分傅里叶变换。最后,应用逆 FFT 对图像进行归一化处理。图 2 显示了模拟管道。

pYYBAGJbzKWAUKX0AABMWr4ZCDw973.png

图 2 。吉布斯现象方框图与噪声模拟。

在这个项目中,我们使用了由 170 多万张训练图像组成的开放图像数据集。然后,我们在由 170 名患者( 996424 个轴向切片)[5]组成的磁共振扩散数据集上测试训练模型。图 3 显示了一个示例 MRI 扩散切片。

poYBAGJbzKaAOUyLAAD85yGWQsY595.png

图 3 。测试集中使用的 MRI 扩散轴向切片示例。

结果

图 4 显示了使用 dldegibbs 模型测试的验证图像示例,该模型使用完全开放的图像训练数据集进行训练。图 5 显示了相应的错误。训练图像在傅里叶空间从 256 × 256 裁剪到 100 × 100 。该模型未模拟部分傅里叶成像。

pYYBAGJbzKeAQfvYAADlAEF9hKo735.png

图 4 。示例 dldegibbs 输入(数据)、输出(估计)和来自 Open Images 验证数据集的目标图像。

poYBAGJbzKiATM-JAAIWKkzFA4E614.png

图 5 。数据输入和目标之间的误差(左)和估计输出和目标之间的误差(右)。

数据与目标之间的平均 MSE 为 13 。 2 ± 9 。 2% 。估计值与目标值之间的平均误差为 2 。 9 ± 2 。 7% 。对于此图像, dldegibbs 模型可使图像质量提高 10% 以上。

概括

在这篇文章中,我们提供了一个可以与 Clara AGX 开发工具包一起使用的解决方案,使用以下资源从 MR 图像中去除噪声和吉布斯现象:

一种商用数据集,称为 Open Images

一个开源的 ML 模型,称为 dldegibbs

关于作者

Emily Anaya 是 NVIDIA Clara AGX团队的实习生,致力于消除磁共振成像(MRI)中的吉布斯现象和噪音。她也是一名博士。斯坦福大学电子工程专业的候选人,她的顾问是克雷格·莱文博士。她的研究重点是解决正电子发射断层成像和磁共振成像(PET/MRI)组合中的光子衰减问题。

Emmett McQuinn 是 NVIDIA Clara AGX 团队的高级工程师。埃米特之前是一家助听器初创公司的创始工程师,领导机器学习DSP 团队,具有自主机器人、科学可视化和超低功耗神经网络芯片的工作经验。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 芯片
    +关注

    关注

    454

    文章

    50472

    浏览量

    422029
  • 神经网络
    +关注

    关注

    42

    文章

    4765

    浏览量

    100573
  • NVIDIA
    +关注

    关注

    14

    文章

    4949

    浏览量

    102837
收藏 人收藏

    评论

    相关推荐

    NPU在深度学习中的应用

    随着人工智能技术的飞速发展,深度学习作为其核心驱动力之一,已经在众多领域展现出了巨大的潜力和价值。NPU(Neural Processing Unit,神经网络处理单元)是专门为深度学习
    的头像 发表于 11-14 15:17 343次阅读

    GPU深度学习应用案例

    GPU在深度学习中的应用广泛且重要,以下是一些GPU深度学习应用案例: 一、图像识别 图像识别是深度学习
    的头像 发表于 10-27 11:13 337次阅读

    AI大模型与深度学习的关系

    AI大模型与深度学习之间存在着密不可分的关系,它们互为促进,相辅相成。以下是对两者关系的介绍: 一、深度学习是AI大模型的基础 技术支撑 :深度
    的头像 发表于 10-23 15:25 404次阅读

    GPU计算主板学习资料第735篇:基于3U VPX的AGX Xavier GPU计算主板 信号计算主板 视频处理 相机信号

    GPU计算主板学习资料第735篇:基于3U VPX的AGX Xavier GPU计算主板 信号计算主板 视频处理 相机信号
    的头像 发表于 10-23 10:09 246次阅读
    GPU计算主板<b class='flag-5'>学习</b>资料第735篇:基于3U VPX的<b class='flag-5'>AGX</b> Xavier GPU计算主板 信号计算主板 视频处理 相机信号

    NVIDIA推出全新深度学习框架fVDB

    在 SIGGRAPH 上推出的全新深度学习框架可用于打造自动驾驶汽车、气候科学和智慧城市的 AI 就绪型虚拟表示。
    的头像 发表于 08-01 14:31 530次阅读

    深度学习模型量化方法

    深度学习模型量化是一种重要的模型轻量化技术,旨在通过减少网络参数的比特宽度来减小模型大小和加速推理过程,同时尽量保持模型性能。从而达到把模型部署到边缘或者低算力设备上,实现降本增效的目标。
    的头像 发表于 07-15 11:01 459次阅读
    <b class='flag-5'>深度</b><b class='flag-5'>学习</b>模型量化方法

    深度学习中的时间序列分类方法

    时间序列分类(Time Series Classification, TSC)是机器学习深度学习领域的重要任务之一,广泛应用于人体活动识别、系统监测、金融预测、医疗诊断等多个领域。随着深度
    的头像 发表于 07-09 15:54 744次阅读

    深度学习中的无监督学习方法综述

    深度学习作为机器学习领域的一个重要分支,近年来在多个领域取得了显著的成果,特别是在图像识别、语音识别、自然语言处理等领域。然而,深度学习模型
    的头像 发表于 07-09 10:50 548次阅读

    深度学习与nlp的区别在哪

    深度学习和自然语言处理(NLP)是计算机科学领域中两个非常重要的研究方向。它们之间既有联系,也有区别。本文将介绍深度学习与NLP的区别。 深度
    的头像 发表于 07-05 09:47 826次阅读

    深度学习常用的Python库

    深度学习作为人工智能的一个重要分支,通过模拟人类大脑中的神经网络来解决复杂问题。Python作为一种流行的编程语言,凭借其简洁的语法和丰富的库支持,成为了深度学习研究和应用的首选工具。
    的头像 发表于 07-03 16:04 583次阅读

    深度学习与传统机器学习的对比

    在人工智能的浪潮中,机器学习深度学习无疑是两大核心驱动力。它们各自以其独特的方式推动着技术的进步,为众多领域带来了革命性的变化。然而,尽管它们都属于机器学习的范畴,但
    的头像 发表于 07-01 11:40 1203次阅读

    深度解析深度学习下的语义SLAM

    随着深度学习技术的兴起,计算机视觉的许多传统领域都取得了突破性进展,例如目标的检测、识别和分类等领域。近年来,研究人员开始在视觉SLAM算法中引入深度学习技术,使得
    发表于 04-23 17:18 1248次阅读
    <b class='flag-5'>深度</b>解析<b class='flag-5'>深度</b><b class='flag-5'>学习</b>下的语义SLAM

    为什么深度学习的效果更好?

    导读深度学习是机器学习的一个子集,已成为人工智能领域的一项变革性技术,在从计算机视觉、自然语言处理到自动驾驶汽车等广泛的应用中取得了显著的成功。深度
    的头像 发表于 03-09 08:26 596次阅读
    为什么<b class='flag-5'>深度</b><b class='flag-5'>学习</b>的效果更好?

    CapSense5可以在扫描时进入深度睡眠吗?

    我试着让 CapSense5 在扫描时进入深度睡眠,就像 MSCLP 一样。 我用的是CY8CKIT-041S-MAX。 我用 1 个按钮 (BTN0) 配置 CAPSENSE™ 我将扫描模式设置
    发表于 01-24 08:06

    什么是深度学习?机器学习深度学习的主要差异

    2016年AlphaGo 击败韩国围棋冠军李世石,在媒体报道中,曾多次提及“深度学习”这个概念。
    的头像 发表于 01-15 10:31 1027次阅读
    什么是<b class='flag-5'>深度</b><b class='flag-5'>学习</b>?机器<b class='flag-5'>学习</b>和<b class='flag-5'>深度</b><b class='flag-5'>学习</b>的主要差异