0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

一行Python代码如何实现并行化

Linux爱好者 来源:Python头条 作者:Python头条 2022-04-19 17:09 次阅读

Python 在程序并行化方面多少有些声名狼藉。撇开技术上的问题,例如线程的实现和 GIL,我觉得错误的教学指导才是主要问题。常见的经典 Python 多线程、多进程教程多显得偏"重"。而且往往隔靴搔痒,没有深入探讨日常工作中最有用的内容。

传统的例子

简单搜索下"Python 多线程教程",不难发现几乎所有的教程都给出涉及类和队列的例子:

import os 
import PIL 

from multiprocessing import Pool 
from PIL import Image

SIZE = (75,75)
SAVE_DIRECTORY = 'thumbs'

def get_image_paths(folder):
  return (os.path.join(folder, f) 
      for f in os.listdir(folder) 
      if 'jpeg' in f)

def create_thumbnail(filename): 
  im = Image.open(filename)
  im.thumbnail(SIZE, Image.ANTIALIAS)
  base, fname = os.path.split(filename) 
  save_path = os.path.join(base, SAVE_DIRECTORY, fname)
  im.save(save_path)

if __name__ == '__main__':
  folder = os.path.abspath(
    '11_18_2013_R000_IQM_Big_Sur_Mon__e10d1958e7b766c3e840')
  os.mkdir(os.path.join(folder, SAVE_DIRECTORY))

  images = get_image_paths(folder)

  pool = Pool()
  pool.map(creat_thumbnail, images)
  pool.close()
  pool.join()

哈,看起来有些像 Java 不是吗?

我并不是说使用生产者/消费者模型处理多线程/多进程任务是错误的(事实上,这一模型自有其用武之地)。只是,处理日常脚本任务时我们可以使用更有效率的模型。

问题在于…

首先,你需要一个样板类;
其次,你需要一个队列来传递对象;
而且,你还需要在通道两端都构建相应的方法来协助其工作(如果需想要进行双向通信或是保存结果还需要再引入一个队列)。

worker 越多,问题越多

按照这一思路,你现在需要一个 worker 线程的线程池。下面是一篇 IBM 经典教程中的例子——在进行网页检索时通过多线程进行加速。

#Example2.py
'''
A more realistic thread pool example 
'''

import time 
import threading 
import Queue 
import urllib2 

class Consumer(threading.Thread): 
  def __init__(self, queue): 
    threading.Thread.__init__(self)
    self._queue = queue 

  def run(self):
    while True: 
      content = self._queue.get() 
      if isinstance(content, str) and content == 'quit':
        break
      response = urllib2.urlopen(content)
    print 'Bye byes!'

def Producer():
  urls = [
    'http://www.python.org', 'http://www.yahoo.com'
    'http://www.scala.org', 'http://www.google.com'
    # etc.. 
  ]
  queue = Queue.Queue()
  worker_threads = build_worker_pool(queue, 4)
  start_time = time.time()

  # Add the urls to process
  for url in urls: 
    queue.put(url) 
  # Add the poison pillv
  for worker in worker_threads:
    queue.put('quit')
  for worker in worker_threads:
    worker.join()

  print 'Done! Time taken: {}'.format(time.time() - start_time)

def build_worker_pool(queue, size):
  workers = []
  for _ in range(size):
    worker = Consumer(queue)
    worker.start() 
    workers.append(worker)
  return workers

if __name__ == '__main__':
  Producer()

这段代码能正确的运行,但仔细看看我们需要做些什么:构造不同的方法、追踪一系列的线程,还有为了解决恼人的死锁问题,我们需要进行一系列的 join 操作。这还只是开始……

至此我们回顾了经典的多线程教程,多少有些空洞不是吗?样板化而且易出错,这样事倍功半的风格显然不那么适合日常使用,好在我们还有更好的方法。

何不试试 map

map 这一小巧精致的函数是简捷实现 Python 程序并行化的关键。map 源于 Lisp 这类函数式编程语言。它可以通过一个序列实现两个函数之间的映射。

  urls = ['http://www.yahoo.com', 'http://www.reddit.com']
  results = map(urllib2.urlopen, urls)

上面的这两行代码将 urls 这一序列中的每个元素作为参数传递到 urlopen 方法中,并将所有结果保存到 results 这一列表中。其结果大致相当于:

results = []
for url in urls: 
  results.append(urllib2.urlopen(url))

map 函数一手包办了序列操作、参数传递和结果保存等一系列的操作。

为什么这很重要呢?这是因为借助正确的库,map 可以轻松实现并行化操作。

6b982f8a-beef-11ec-9e50-dac502259ad0.png

在 Python 中有个两个库包含了 map 函数:multiprocessing 和它鲜为人知的子库 multiprocessing.dummy.

这里多扯两句:multiprocessing.dummy?mltiprocessing 库的线程版克隆?这是虾米?即便在 multiprocessing 库的官方文档里关于这一子库也只有一句相关描述。而这句描述译成人话基本就是说:"嘛,有这么个东西,你知道就成."相信我,这个库被严重低估了!

dummy 是 multiprocessing 模块的完整克隆,唯一的不同在于 multiprocessing 作用于进程,而 dummy 模块作用于线程(因此也包括了 Python 所有常见的多线程限制)。
所以替换使用这两个库异常容易。你可以针对 IO 密集型任务和 CPU 密集型任务来选择不同的库。

动手尝试

使用下面的两行代码来引用包含并行化 map 函数的库:

from multiprocessing import Pool
from multiprocessing.dummy import Pool as ThreadPool

实例化 Pool 对象:

pool = ThreadPool()

这条简单的语句替代了 example2.py 中 buildworkerpool 函数 7 行代码的工作。它生成了一系列的 worker 线程并完成初始化工作、将它们储存在变量中以方便访问。

Pool 对象有一些参数,这里我所需要关注的只是它的第一个参数:processes. 这一参数用于设定线程池中的线程数。其默认值为当前机器 CPU 的核数。

一般来说,执行 CPU 密集型任务时,调用越多的核速度就越快。但是当处理网络密集型任务时,事情有有些难以预计了,通过实验来确定线程池的大小才是明智的。

pool = ThreadPool(4) # Sets the pool size to 4

线程数过多时,切换线程所消耗的时间甚至会超过实际工作时间。对于不同的工作,通过尝试来找到线程池大小的最优值是个不错的主意。

创建好 Pool 对象后,并行化的程序便呼之欲出了。我们来看看改写后的 example2.py

import urllib2 
from multiprocessing.dummy import Pool as ThreadPool 

urls = [
  'http://www.python.org', 
  'http://www.python.org/about/',
  'http://www.onlamp.com/pub/a/python/2003/04/17/metaclasses.html',
  'http://www.python.org/doc/',
  'http://www.python.org/download/',
  'http://www.python.org/getit/',
  'http://www.python.org/community/',
  'https://wiki.python.org/moin/',
  'http://planet.python.org/',
  'https://wiki.python.org/moin/LocalUserGroups',
  'http://www.python.org/psf/',
  'http://docs.python.org/devguide/',
  'http://www.python.org/community/awards/'
  # etc.. 
  ]

# Make the Pool of workers
pool = ThreadPool(4) 
# Open the urls in their own threads
# and return the results
results = pool.map(urllib2.urlopen, urls)
#close the pool and wait for the work to finish 
pool.close() 
pool.join()

实际起作用的代码只有 4 行,其中只有一行是关键的。map 函数轻而易举的取代了前文中超过 40 行的例子。为了更有趣一些,我统计了不同方法、不同线程池大小的耗时情况。

# results = [] 
# for url in urls:
#  result = urllib2.urlopen(url)
#  results.append(result)

# # ------- VERSUS ------- # 

# # ------- 4 Pool ------- # 
# pool = ThreadPool(4) 
# results = pool.map(urllib2.urlopen, urls)

# # ------- 8 Pool ------- # 

# pool = ThreadPool(8) 
# results = pool.map(urllib2.urlopen, urls)

# # ------- 13 Pool ------- # 

# pool = ThreadPool(13) 
# results = pool.map(urllib2.urlopen, urls)

结果:

#    Single thread: 14.4 Seconds 
#        4 Pool:  3.1 Seconds
#        8 Pool:  1.4 Seconds
#       13 Pool:  1.3 Seconds

很棒的结果不是吗?这一结果也说明了为什么要通过实验来确定线程池的大小。在我的机器上当线程池大小大于 9 带来的收益就十分有限了。

另一个真实的例子

生成上千张图片的缩略图
这是一个 CPU 密集型的任务,并且十分适合进行并行化。

基础单进程版本

import os 
import PIL 

from multiprocessing import Pool 
from PIL import Image

SIZE = (75,75)
SAVE_DIRECTORY = 'thumbs'

def get_image_paths(folder):
  return (os.path.join(folder, f) 
      for f in os.listdir(folder) 
      if 'jpeg' in f)

def create_thumbnail(filename): 
  im = Image.open(filename)
  im.thumbnail(SIZE, Image.ANTIALIAS)
  base, fname = os.path.split(filename) 
  save_path = os.path.join(base, SAVE_DIRECTORY, fname)
  im.save(save_path)

if __name__ == '__main__':
  folder = os.path.abspath(
    '11_18_2013_R000_IQM_Big_Sur_Mon__e10d1958e7b766c3e840')
  os.mkdir(os.path.join(folder, SAVE_DIRECTORY))

  images = get_image_paths(folder)

  for image in images:
    create_thumbnail(Image)

上边这段代码的主要工作就是将遍历传入的文件夹中的图片文件,一一生成缩略图,并将这些缩略图保存到特定文件夹中。

这我的机器上,用这一程序处理 6000 张图片需要花费 27.9 秒。

如果我们使用 map 函数来代替 for 循环:

import os 
import PIL 

from multiprocessing import Pool 
from PIL import Image

SIZE = (75,75)
SAVE_DIRECTORY = 'thumbs'

def get_image_paths(folder):
  return (os.path.join(folder, f) 
      for f in os.listdir(folder) 
      if 'jpeg' in f)

def create_thumbnail(filename): 
  im = Image.open(filename)
  im.thumbnail(SIZE, Image.ANTIALIAS)
  base, fname = os.path.split(filename) 
  save_path = os.path.join(base, SAVE_DIRECTORY, fname)
  im.save(save_path)

if __name__ == '__main__':
  folder = os.path.abspath(
    '11_18_2013_R000_IQM_Big_Sur_Mon__e10d1958e7b766c3e840')
  os.mkdir(os.path.join(folder, SAVE_DIRECTORY))

  images = get_image_paths(folder)

  pool = Pool()
  pool.map(creat_thumbnail, images)
  pool.close()
  pool.join()

5.6 秒!

虽然只改动了几行代码,我们却明显提高了程序的执行速度。在生产环境中,我们可以为 CPU 密集型任务和 IO 密集型任务分别选择多进程和多线程库来进一步提高执行速度——这也是解决死锁问题的良方。此外,由于 map 函数并不支持手动线程管理,反而使得相关的 debug 工作也变得异常简单。

到这里,我们就实现了(基本)通过一行 Python 实现并行化。

原文标题:一行 Python 代码实现并行

文章出处:【微信公众号:Linux爱好者】欢迎添加关注!文章转载请注明出处。

审核编辑:彭菁

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 函数
    +关注

    关注

    3

    文章

    4276

    浏览量

    62303
  • 代码
    +关注

    关注

    30

    文章

    4717

    浏览量

    68197
  • python
    +关注

    关注

    55

    文章

    4765

    浏览量

    84353

原文标题:一行 Python 代码实现并行

文章出处:【微信号:LinuxHub,微信公众号:Linux爱好者】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    分享50条经典的Python一行代码

    今天浩道跟大家分享python学习过程中非常经典的50条一行代码,让大家体验它简洁而功能强大的特点。同时给大家分享号主收集到的所有关于python的电子书籍,所有电子书以网盘打包,免费
    发表于 08-16 15:00 987次阅读

    一行代码——Android

    android开发。第一行代码开发入门 。
    发表于 03-21 11:40 0次下载

    一行代码——Android

    一行代码——Android
    发表于 03-19 11:24 0次下载

    如何实现计算机视觉的目标检测10Python代码帮你实现

    只需10Python代码,我们就能实现计算机视觉中目标检测。 没错,用这寥寥10代码,就能
    的头像 发表于 02-03 11:35 3025次阅读

    Python使用过程中用一行代码实现过哪些激动人心的功能呢?

    刻,我脑洞大开,很想知道 python 高手们只用一行代码都能干些什么?当然,限定条件是不能引用自定义的模块,可以使用内置模块或通用的第三方模块。
    的头像 发表于 05-12 09:07 2578次阅读

    盘点10个一行强大的、有趣的Python代码

    Python门非常简洁而优美的编程语言,在其他编程语言中需要繁琐的代码逻辑才能完成的事情,往往在Python一行就可以解决。
    的头像 发表于 10-08 14:33 8722次阅读

    使用map函数实现Python程序并行

    Python 在程序并行方面多少有些声名狼藉。撇开技术上的问题,例如线程的实现和 GIL,我觉得错误的教学指导才是主要问题。常见的经典 Pytho
    的头像 发表于 06-12 16:31 1653次阅读

    20个非常有用的Python单行代码

    有用的 Python 单行代码片段,只需一行代码即可解决特定编码问题!
    的头像 发表于 03-14 17:45 859次阅读

    一行Python代码实现并行

    Python 在程序并行方面多少有些声名狼藉。撇开技术上的问题,例如线程的实现和 GIL,我觉得错误的教学指导才是主要问题。常见的经典 Pytho
    的头像 发表于 04-06 11:00 543次阅读

    一行代码Python程序转换为GUI应用程序

    Gooey项目支持用一行代码将(几乎)任何Python 2或3控制台程序转换为GUI应用程序。 1.快速开始 开始之前,你要确保Python和pip已经成功安装在电脑上,如果没有,可以
    的头像 发表于 10-17 11:41 863次阅读
    <b class='flag-5'>一行</b><b class='flag-5'>代码</b>将<b class='flag-5'>Python</b>程序转换为GUI应用程序

    一行代码Python程序转换为图形界面应用

    Gooey项目支持用一行代码将(几乎)任何Python 2或3控制台程序转换为GUI应用程序。 1.快速开始 开始之前,你要确保Python和pip已经成功安装在电脑上,如果没有,可以
    的头像 发表于 10-30 15:39 422次阅读
    <b class='flag-5'>一行</b><b class='flag-5'>代码</b>将<b class='flag-5'>Python</b>程序转换为图形界面应用

    如何用一行命令格式 Python 代码

    代码规范啊!然而这显然是不可能的。 不过虽然无法改变他人,但我们可以改变自己。现在有了Black这个神器,我们可以在终端中输入句命令自动使用最规范的代码风格来格式
    的头像 发表于 10-31 10:35 539次阅读
    如何用<b class='flag-5'>一行</b>命令格式<b class='flag-5'>化</b> <b class='flag-5'>Python</b> <b class='flag-5'>代码</b>

    python如何将多行合并成一行

    Python中,有多种方法可以将多行合并成一行。以下是详细解释和示例: 方法:使用字符串的replace()方法 你可以使用字符串的replace()方法来删除换行符并将多行合并为一行
    的头像 发表于 11-24 09:42 4411次阅读

    python如何让多行输出为一行

    。但是,我们可以使用end参数将其替换为其他字符,例如空格或逗号,从而实现多行输出为一行。 示例代码如下: print ( "Hello," , end = " " ) print ( "World
    的头像 发表于 11-24 09:45 6647次阅读

    python多行数据合并成一行

    Python中,有许多不同的方法可以将多行数据合并成一行。接下来,我将为您详细介绍其中些方法。 方法:使用字符串连接符 最常见的方法是使用字符串连接符“+”来连接每
    的头像 发表于 11-24 09:48 2298次阅读