0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

一文详细了解Cgroup

Linux阅码场 来源:Linux阅码场 作者:伟林 2022-04-20 11:10 次阅读

作者简介

伟林,中年码农,从事过电信、手机、安全、芯片等行业,目前依旧从事Linux方向开发工作,个人爱好Linux相关知识分享,个人微博CSDN pwl999,欢迎大家关注!

Q学员问:我最近在看k8s对cgroup的管理部分,对于cfs对cgroup的调度有些疑惑。想搞明白cgroup里面的 period、quota是如何影响cfs的调度的

A伟林老师给出如下文章进行解答

1.Cgroup

1.1、cgroup概念

cgroup最基本的操作时我们可以使用以下命令创建一个cgroup文件夹:

mount-tcgroup-ocpu,cpusetcpu&cpuset/dev/cpu_cpuset_test

那么/dev/cpu_cpuset_test文件夹下就有一系列的cpu、cpuset cgroup相关的控制节点,tasks文件中默认加入了所有进程到这个cgroup中。可以继续创建子文件夹,子文件夹继承了父文件夹的结构形式,我们可以给子文件夹配置不同的参数,把一部分进程加入到子文件夹中的tasks文件当中,久可以实现分开的cgroup控制了。

e1a8bb3c-bf93-11ec-9e50-dac502259ad0.png

关于cgroup的结构有以下规则和规律:

  • 1、cgroup有很多subsys,我们平时接触到的cpu、cpuset、cpuacct、memory、blkio都是cgroup_subsys;

  • 2、一个cgroup hierarchy,就是使用mount命令挂载的一个cgroup文件系统,hierarchy对应mount的根cgroup_root;

  • 3、一个hierarchy可以制定一个subsys,也可以制定多个subsys。可以是一个subsys,也可以是一个subsys组合;

  • 4、一个subsys只能被一个hierarchy引用一次,如果subsys已经被hierarchy引用,新hierarchy创建时不能引用这个subsys;唯一例外的是,我们可以创建和旧的hierarchy相同的subsys组合,这其实没有创建新的hierarchy,只是简单的符号链接;

  • 5、hierarchy对应一个文件系统,cgroup对应这个文件系统中的文件夹;subsys是基类,而css(cgroup_subsys_state)是cgroup引用subsys的实例;比如父目录和子目录分别是两个cgroup,他们都要引用相同的subsys,但是他们需要不同的配置,所以会创建不同的css供cgroup->subsys[]来引用;

  • 6、一个任务对系统中不同的subsys一定会有引用,但是会引用到不同的hierarchy不同的cgroup即不同css当中;所以系统使用css_set结构来管理任务对css的引。如果任务引用的css组合相同,那他们开源使用相同的css_set;

  • 7、还有cgroup到task的反向引用,系统引入了cg_group_link结构。这部分可以参考Docker背后的内核知识——cgroups资源限制一文的描述,如下图的结构关系:

cgroup数据结构之间的关系

e1bc5c46-bf93-11ec-9e50-dac502259ad0.png

1、subsys是一组基类(cpu、blkio),css(cgroup_subsys_state)是基类的实例化。

2、cgroup的一组css的集合。

3、hierarchy是多个cgoup的组合,它决定cgroup中能创建哪些subsys的css。hierarchy可以任意引用几种subsys,但是一个subsys只能被一个hierarchy引用。如果一个hierarchy已经引用某个subsys,那么其他hierarchy就不能再引用这个subsys了。hierarchy对应cgroupfs_root数据结构。

4、一旦hierarchy确定了subsys,那么它下面的cgroup只能创建对应的css实例。一个subsys只能存在于某个hierarchy中,hierarchy下的多个cgroup可以创建这个subsys对应的多个css。

5、hierarchy、cgroup、css三者还使用文件系统来表示层次关系:hierarchy是文件系统挂载点,cgroup是文件夹,css是文件夹中的文件。css的值,以及兄弟和父子关系,表示了subsys资源配额的关系。

6、cgoup是为了划分资源配额,配置的主体是进程task。每个task在每一类别的subsys上都有配额,所以每个task在每个类别的subsys上有一个唯一的css与之关联。

7、进程和css是一对多(1 x N)的关系。而系统中的多个进程和多个css,是多对多(M x N)的关系。为了收敛这种多对多的关系,系统把所有css属性都相同的一组进程放在一个css_set当中,把多个css放在一个cgroup当中,这样还是多对多但是已经收敛(M/a x N/b)。css_set根据属性组合,存入css_set_table当中。

8、css_set代表a个css属性相同的进程,cgroup代表引用的b个subsys。多对多的关系从task vs css的(M x N),收敛到css_set vs cgroup的(M/a x N/b)。为了进一步简化css_set和cgroup之间多对多关系的双向查找,引入了cg_group_link数据结构:

e1d577b2-bf93-11ec-9e50-dac502259ad0.png

task_struct通过->cgroup成员找到css_set结构,css_set利用->tasks链表把所有css属性相同的进程链接到一起。

dir descript
css_set → cgroup css_set的->cgrp_links链表上挂载了这组css相关cgroup对应的cg_cgroup_link,通过cg_cgroup_link->cgrp找到cgroup,再通过cgroup->subsys[]找到css。
cgroup → css_set cgroup的->cset_links链表上挂载了所有指向本cgoup的task对应的cg_cgroup_link,通过cg_cgroup_link->cset找到css_set,再通过css_set->tasks找到所有的task_struct。

9、还有一条task_struct → cgroup 的通路:

e1ef5e0c-bf93-11ec-9e50-dac502259ad0.png

路径:task_struct->cgroup → css_set->subsys[] → cgroup_subsys_state->cgroup → cgroup

1.2、代码分析

1、"/proc/cgroups"

subsys的链表:for_each_subsys(ss, i)

一个susbsys对应一个hierarchy:ss->root

一个hierarchy有多少个cgroup:ss->root->nr_cgrps

# ount -t cgroup -o freezer,debug bbb freezer_test/ 
# cat /proc/cgroups#subsys_name    hierarchy       num_cgroups     enabledcpuset  4       6       1cpu     3       2       1cpuacct 1       147     1schedtune       2       3       1freezer 6       1       1debug   6       1       1
static int proc_cgroupstats_show(struct seq_file *m, void *v){  struct cgroup_subsys *ss;  int i;
  seq_puts(m, "#subsys_name	hierarchy	num_cgroups	enabled
");  /*   * ideally we don't want subsystems moving around while we do this.   * cgroup_mutex is also necessary to guarantee an atomic snapshot of   * subsys/hierarchy state.   */  mutex_lock(&cgroup_mutex);
  for_each_subsys(ss, i)    seq_printf(m, "%s	%d	%d	%d
",         ss->legacy_name, ss->root->hierarchy_id,         atomic_read(&ss->root->nr_cgrps),         cgroup_ssid_enabled(i));
  mutex_unlock(&cgroup_mutex);  return 0;}

2、"/proc/pid/cgroup"

每种subsys组合组成一个新的hierarchy,每个hierarchy在for_each_root(root)中创建一个root树;

每个hierarchy顶层目录和子目录都是一个cgroup,一个hierarchy可以有多个cgroup,对应的subsys组合一样,但是参数不一样

cgroup_root自带一个cgroup即root->cgrp,作为hierarchy的顶级目录

一个cgroup对应多个subsys,使用cgroup_subsys_state类型(css)的cgroup->subsys[CGROUP_SUBSYS_COUNT]数组去和多个subsys链接;

一个cgroup自带一个cgroup_subsys_state即cgrp->self,这个css的作用是css->parent指针,建立起cgroup之间的父子关系;

css一个公用结构,每个subsys使用自己的函数ss->css_alloc()分配自己的css结构,这个结构包含公用css + subsys私有数据;

每个subsys只能存在于一个组合(hierarchy)当中,如果一个subsys已经被一个组合引用,其他组合不能再引用这个subsys。唯一例外的是,我们可以重复mount相同的组合,但是这样并没有创建新组合,只是创建了一个链接指向旧组合;

进程对应每一种hierarchy,一定有一个cgroup对应。

# cat /proc/832/cgroup6:freezer,debug:/4:cpuset:/3:cpu:/2:schedtune:/1:cpuacct:/
int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,         struct pid *pid, struct task_struct *tsk){  char *buf, *path;  int retval;  struct cgroup_root *root;
  retval = -ENOMEM;  buf = kmalloc(PATH_MAX, GFP_KERNEL);  if (!buf)    goto out;
  mutex_lock(&cgroup_mutex);  spin_lock_bh(&css_set_lock);
  for_each_root(root) {    struct cgroup_subsys *ss;    struct cgroup *cgrp;    int ssid, count = 0;
    if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)      continue;
    seq_printf(m, "%d:", root->hierarchy_id);    if (root != &cgrp_dfl_root)      for_each_subsys(ss, ssid)        if (root->subsys_mask & (1 << ssid))          seq_printf(m, "%s%s", count++ ? "," : "",               ss->legacy_name);    if (strlen(root->name))      seq_printf(m, "%sname=%s", count ? "," : "",           root->name);    seq_putc(m, ':');
    cgrp = task_cgroup_from_root(tsk, root);
    /*     * On traditional hierarchies, all zombie tasks show up as     * belonging to the root cgroup.  On the default hierarchy,     * while a zombie doesn't show up in "cgroup.procs" and     * thus can't be migrated, its /proc/PID/cgroup keeps     * reporting the cgroup it belonged to before exiting.  If     * the cgroup is removed before the zombie is reaped,     * " (deleted)" is appended to the cgroup path.     */    if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {      path = cgroup_path(cgrp, buf, PATH_MAX);      if (!path) {        retval = -ENAMETOOLONG;        goto out_unlock;      }    } else {      path = "/";    }
    seq_puts(m, path);
    if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))      seq_puts(m, " (deleted)
");    else      seq_putc(m, '
');  }
  retval = 0;out_unlock:  spin_unlock_bh(&css_set_lock);  mutex_unlock(&cgroup_mutex);  kfree(buf);out:  return retval;}

3、初始化

int __init cgroup_init_early(void){  static struct cgroup_sb_opts __initdata opts;  struct cgroup_subsys *ss;  int i;
    /* (1) 初始化默认root cgrp_dfl_root,选项opts为空,初始了        root->cgrp          // cgrp->root = root;        root->cgrp.self     // cgrp->self.cgroup = cgrp; cgrp->self.flags |= CSS_ONLINE;      */  init_cgroup_root(&cgrp_dfl_root, &opts);  cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
  RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
    /* (2) 轮询subsys进行初始化 */  for_each_subsys(ss, i) {    WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,         "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s
",         i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,         ss->id, ss->name);    WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,         "cgroup_subsys_name %s too long
", cgroup_subsys_name[i]);
        /* (3) 初始化ss->id、ss->name */    ss->id = i;    ss->name = cgroup_subsys_name[i];    if (!ss->legacy_name)      ss->legacy_name = cgroup_subsys_name[i];
        /* (4) ss链接到默认root(cgrp_dfl_root)              默认css_set(init_css_set)指向ss         */    if (ss->early_init)      cgroup_init_subsys(ss, true);  }  return 0;}
|→
static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early){  struct cgroup_subsys_state *css;
  printk(KERN_INFO "Initializing cgroup subsys %s
", ss->name);
  mutex_lock(&cgroup_mutex);
  idr_init(&ss->css_idr);  INIT_LIST_HEAD(&ss->cfts);
  /* Create the root cgroup state for this subsystem */  ss->root = &cgrp_dfl_root;    /* (4.1) subsys分配一个新的相关的cgroup_subsys_state */  css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));  /* We don't handle early failures gracefully */  BUG_ON(IS_ERR(css));    /* (4.2) 初始化css的成员指向cgroup       cgroup为默认值cgrp_dfl_root.cgrp:      css->cgroup = cgrp;      css->ss = ss;      INIT_LIST_HEAD(&css->sibling);      INIT_LIST_HEAD(&css->children);   */  init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
  /*   * Root csses are never destroyed and we can't initialize   * percpu_ref during early init.  Disable refcnting.   */  css->flags |= CSS_NO_REF;
  if (early) {    /* allocation can't be done safely during early init */    css->id = 1;  } else {    css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);    BUG_ON(css->id < 0);  }
  /* Update the init_css_set to contain a subsys   * pointer to this state - since the subsystem is   * newly registered, all tasks and hence the   * init_css_set is in the subsystem's root cgroup. */  /* (4.3) css_set指向新的css */  init_css_set.subsys[ss->id] = css;
  have_fork_callback |= (bool)ss->fork << ss->id;  have_exit_callback |= (bool)ss->exit << ss->id;  have_free_callback |= (bool)ss->free << ss->id;  have_canfork_callback |= (bool)ss->can_fork << ss->id;
  /* At system boot, before all subsystems have been   * registered, no tasks have been forked, so we don't   * need to invoke fork callbacks here. */  BUG_ON(!list_empty(&init_task.tasks));        /* (4.4) cgroup测指向css:        执行ss->css_online(css);        css->cgroup->subsys[ss->id] = css;     */  BUG_ON(online_css(css));
  mutex_unlock(&cgroup_mutex);}

int __init cgroup_init(void){  struct cgroup_subsys *ss;  int ssid;
  BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));  BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));  BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
  /*   * The latency of the synchronize_sched() is too high for cgroups,   * avoid it at the cost of forcing all readers into the slow path.   */  rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
  mutex_lock(&cgroup_mutex);
  /*   * Add init_css_set to the hash table so that dfl_root can link to   * it during init.   */  hash_add(css_set_table, &init_css_set.hlist,     css_set_hash(init_css_set.subsys));
  BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
  mutex_unlock(&cgroup_mutex);
  for_each_subsys(ss, ssid) {    if (ss->early_init) {      struct cgroup_subsys_state *css =        init_css_set.subsys[ss->id];
      css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,               GFP_KERNEL);      BUG_ON(css->id < 0);    } else {      cgroup_init_subsys(ss, false);    }
    list_add_tail(&init_css_set.e_cset_node[ssid],            &cgrp_dfl_root.cgrp.e_csets[ssid]);
    /*     * Setting dfl_root subsys_mask needs to consider the     * disabled flag and cftype registration needs kmalloc,     * both of which aren't available during early_init.     */    if (cgroup_disable_mask & (1 << ssid)) {      static_branch_disable(cgroup_subsys_enabled_key[ssid]);      printk(KERN_INFO "Disabling %s control group subsystem
",             ss->name);      continue;    }
        /* (1) 默认root(cgrp_dfl_root),支持所有ss */    cgrp_dfl_root.subsys_mask |= 1 << ss->id;
    if (!ss->dfl_cftypes)      cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
        /* (2) 将cftypes(ss->legacy_cftypes/ss->legacy_cftypes)加入到ss->cfts链表 */    if (ss->dfl_cftypes == ss->legacy_cftypes) {      WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));    } else {      WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));      WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));    }
    if (ss->bind)      ss->bind(init_css_set.subsys[ssid]);  }
  /* init_css_set.subsys[] has been updated, re-hash */  hash_del(&init_css_set.hlist);  hash_add(css_set_table, &init_css_set.hlist,     css_set_hash(init_css_set.subsys));
  WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));  WARN_ON(register_filesystem(&cgroup_fs_type));  WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
  return 0;}

4、mount操作

创建新的root,因为ss默认都和默认root(cgrp_dfl_root)建立了关系,所以ss需要先解除旧的root链接,再和新root建立起链接。

static struct dentry *cgroup_mount(struct file_system_type *fs_type,       int flags, const char *unused_dev_name,       void *data){  struct super_block *pinned_sb = NULL;  struct cgroup_subsys *ss;  struct cgroup_root *root;  struct cgroup_sb_opts opts;  struct dentry *dentry;  int ret;  int i;  bool new_sb;
  /*   * The first time anyone tries to mount a cgroup, enable the list   * linking each css_set to its tasks and fix up all existing tasks.   */  if (!use_task_css_set_links)    cgroup_enable_task_cg_lists();
  mutex_lock(&cgroup_mutex);
  /* First find the desired set of subsystems */  /* (1) 解析mount选项到opts */  ret = parse_cgroupfs_options(data, &opts);  if (ret)    goto out_unlock;
  /* look for a matching existing root */  if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {    cgrp_dfl_root_visible = true;    root = &cgrp_dfl_root;    cgroup_get(&root->cgrp);    ret = 0;    goto out_unlock;  }
  /*   * Destruction of cgroup root is asynchronous, so subsystems may   * still be dying after the previous unmount.  Let's drain the   * dying subsystems.  We just need to ensure that the ones   * unmounted previously finish dying and don't care about new ones   * starting.  Testing ref liveliness is good enough.   */  /* (2) */  for_each_subsys(ss, i) {    if (!(opts.subsys_mask & (1 << i)) ||        ss->root == &cgrp_dfl_root)      continue;
    if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {      mutex_unlock(&cgroup_mutex);      msleep(10);      ret = restart_syscall();      goto out_free;    }    cgroup_put(&ss->root->cgrp);  }
    /* (3) */  for_each_root(root) {    bool name_match = false;
    if (root == &cgrp_dfl_root)      continue;
    /*     * If we asked for a name then it must match.  Also, if     * name matches but sybsys_mask doesn't, we should fail.     * Remember whether name matched.     */    if (opts.name) {      if (strcmp(opts.name, root->name))        continue;      name_match = true;    }
    /*     * If we asked for subsystems (or explicitly for no     * subsystems) then they must match.     */    if ((opts.subsys_mask || opts.none) &&        (opts.subsys_mask != root->subsys_mask)) {      if (!name_match)        continue;      ret = -EBUSY;      goto out_unlock;    }
    if (root->flags ^ opts.flags)      pr_warn("new mount options do not match the existing superblock, will be ignored
");
    /*     * We want to reuse @root whose lifetime is governed by its     * ->cgrp.  Let's check whether @root is alive and keep it     * that way.  As cgroup_kill_sb() can happen anytime, we     * want to block it by pinning the sb so that @root doesn't     * get killed before mount is complete.     *     * With the sb pinned, tryget_live can reliably indicate     * whether @root can be reused.  If it's being killed,     * drain it.  We can use wait_queue for the wait but this     * path is super cold.  Let's just sleep a bit and retry.     */    pinned_sb = kernfs_pin_sb(root->kf_root, NULL);    if (IS_ERR(pinned_sb) ||        !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {      mutex_unlock(&cgroup_mutex);      if (!IS_ERR_OR_NULL(pinned_sb))        deactivate_super(pinned_sb);      msleep(10);      ret = restart_syscall();      goto out_free;    }
    ret = 0;    goto out_unlock;  }
  /*   * No such thing, create a new one.  name= matching without subsys   * specification is allowed for already existing hierarchies but we   * can't create new one without subsys specification.   */  if (!opts.subsys_mask && !opts.none) {    ret = -EINVAL;    goto out_unlock;  }
    /* (4) 分配新的root */  root = kzalloc(sizeof(*root), GFP_KERNEL);  if (!root) {    ret = -ENOMEM;    goto out_unlock;  }
     /* (5) 初始化新的root,初始了        root->cgrp          // cgrp->root = root;        root->cgrp.self     // cgrp->self.cgroup = cgrp; cgrp->self.flags |= CSS_ONLINE;         root->name = opts->name     */  init_cgroup_root(root, &opts);
    /* (6) 将新的root和opts.subsys_mask指向的多个ss进行链接 */  ret = cgroup_setup_root(root, opts.subsys_mask);  if (ret)    cgroup_free_root(root);
out_unlock:  mutex_unlock(&cgroup_mutex);out_free:  kfree(opts.release_agent);  kfree(opts.name);
  if (ret)    return ERR_PTR(ret);
    /* (7) mount新root对应的根目录 */  dentry = kernfs_mount(fs_type, flags, root->kf_root,        CGROUP_SUPER_MAGIC, &new_sb);  if (IS_ERR(dentry) || !new_sb)    cgroup_put(&root->cgrp);
  /*   * If @pinned_sb, we're reusing an existing root and holding an   * extra ref on its sb.  Mount is complete.  Put the extra ref.   */  if (pinned_sb) {    WARN_ON(new_sb);    deactivate_super(pinned_sb);  }
  return dentry;}
|→
static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask){  LIST_HEAD(tmp_links);  struct cgroup *root_cgrp = &root->cgrp;  struct css_set *cset;  int i, ret;
  lockdep_assert_held(&cgroup_mutex);
  ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);  if (ret < 0)    goto out;  root_cgrp->id = ret;
  ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,            GFP_KERNEL);  if (ret)    goto out;
  /*   * We're accessing css_set_count without locking css_set_lock here,   * but that's OK - it can only be increased by someone holding   * cgroup_lock, and that's us. The worst that can happen is that we   * have some link structures left over   */  ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);  if (ret)    goto cancel_ref;
  ret = cgroup_init_root_id(root);  if (ret)    goto cancel_ref;
    /* (6.1) 创建root对应的顶层root文件夹 */  root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,             KERNFS_ROOT_CREATE_DEACTIVATED,             root_cgrp);  if (IS_ERR(root->kf_root)) {    ret = PTR_ERR(root->kf_root);    goto exit_root_id;  }  root_cgrp->kn = root->kf_root->kn;
    /* (6.2) 创建cgroup自己对应的一些file,cgroup自己的file由cgroup自己的css(cgrp->self)承担,        后面cgroup会依次创建每个subsys的file,subsys的file由每个ss对应的css(cgrp->subsys[])承担     */  ret = css_populate_dir(&root_cgrp->self, NULL);  if (ret)    goto destroy_root;
    /* (6.3) 将新root需要的subsys和原默认root(cgrp_dfl_root)解除关系,        并且把这些ss重新和新root建立关系     */  ret = rebind_subsystems(root, ss_mask);  if (ret)    goto destroy_root;
  /*   * There must be no failure case after here, since rebinding takes   * care of subsystems' refcounts, which are explicitly dropped in   * the failure exit path.   */  list_add(&root->root_list, &cgroup_roots);  cgroup_root_count++;
  /*   * Link the root cgroup in this hierarchy into all the css_set   * objects.   */  spin_lock_bh(&css_set_lock);  hash_for_each(css_set_table, i, cset, hlist) {    link_css_set(&tmp_links, cset, root_cgrp);    if (css_set_populated(cset))      cgroup_update_populated(root_cgrp, true);  }  spin_unlock_bh(&css_set_lock);
  BUG_ON(!list_empty(&root_cgrp->self.children));  BUG_ON(atomic_read(&root->nr_cgrps) != 1);
  kernfs_activate(root_cgrp->kn);  ret = 0;  goto out;
destroy_root:  kernfs_destroy_root(root->kf_root);  root->kf_root = NULL;exit_root_id:  cgroup_exit_root_id(root);cancel_ref:  percpu_ref_exit(&root_cgrp->self.refcnt);out:  free_cgrp_cset_links(&tmp_links);  return ret;}
||→
static int rebind_subsystems(struct cgroup_root *dst_root,           unsigned long ss_mask){  struct cgroup *dcgrp = &dst_root->cgrp;  struct cgroup_subsys *ss;  unsigned long tmp_ss_mask;  int ssid, i, ret;
  lockdep_assert_held(&cgroup_mutex);
  for_each_subsys_which(ss, ssid, &ss_mask) {    /* if @ss has non-root csses attached to it, can't move */    if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))      return -EBUSY;
    /* can't move between two non-dummy roots either */    if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)      return -EBUSY;  }
  /* skip creating root files on dfl_root for inhibited subsystems */  tmp_ss_mask = ss_mask;  if (dst_root == &cgrp_dfl_root)    tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
  for_each_subsys_which(ss, ssid, &tmp_ss_mask) {    struct cgroup *scgrp = &ss->root->cgrp;    int tssid;
        /* (6.3.1) 在新root的根cgroup(dst_root->cgrp)下,            根据subsys的file链表(css->ss->cfts)创建subsys对应的file         */    ret = css_populate_dir(cgroup_css(scgrp, ss), dcgrp);    if (!ret)      continue;
    /*     * Rebinding back to the default root is not allowed to     * fail.  Using both default and non-default roots should     * be rare.  Moving subsystems back and forth even more so.     * Just warn about it and continue.     */    if (dst_root == &cgrp_dfl_root) {      if (cgrp_dfl_root_visible) {        pr_warn("failed to create files (%d) while rebinding 0x%lx to default root
",          ret, ss_mask);        pr_warn("you may retry by moving them to a different hierarchy and unbinding
");      }      continue;    }
    for_each_subsys_which(ss, tssid, &tmp_ss_mask) {      if (tssid == ssid)        break;      css_clear_dir(cgroup_css(scgrp, ss), dcgrp);    }    return ret;  }
  /*   * Nothing can fail from this point on.  Remove files for the   * removed subsystems and rebind each subsystem.   */  for_each_subsys_which(ss, ssid, &ss_mask) {    struct cgroup_root *src_root = ss->root;    struct cgroup *scgrp = &src_root->cgrp;    struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);    struct css_set *cset;
    WARN_ON(!css || cgroup_css(dcgrp, ss));
    css_clear_dir(css, NULL);
        /* (6.3.2) 取消原root cgroup对subsys的css的引用 */    RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);        /* (6.3.3) 链接新root cgroup和subsys的css的引用 */    rcu_assign_pointer(dcgrp->subsys[ssid], css);    ss->root = dst_root;    css->cgroup = dcgrp;
    spin_lock_bh(&css_set_lock);    hash_for_each(css_set_table, i, cset, hlist)      list_move_tail(&cset->e_cset_node[ss->id],               &dcgrp->e_csets[ss->id]);    spin_unlock_bh(&css_set_lock);
    src_root->subsys_mask &= ~(1 << ssid);    scgrp->subtree_control &= ~(1 << ssid);    cgroup_refresh_child_subsys_mask(scgrp);
    /* default hierarchy doesn't enable controllers by default */    dst_root->subsys_mask |= 1 << ssid;    if (dst_root == &cgrp_dfl_root) {      static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);    } else {      dcgrp->subtree_control |= 1 << ssid;      cgroup_refresh_child_subsys_mask(dcgrp);      static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);    }
    if (ss->bind)      ss->bind(css);  }
  kernfs_activate(dcgrp->kn);  return 0;}

5、文件操作

创建一个新文件夹,相当于创建一个新的cgroup。我们重点来看看新建文件夹的操作:

static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {  .remount_fs    = cgroup_remount,  .show_options    = cgroup_show_options,  .mkdir      = cgroup_mkdir,  .rmdir      = cgroup_rmdir,  .rename      = cgroup_rename,};
static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,      umode_t mode){  struct cgroup *parent, *cgrp;  struct cgroup_root *root;  struct cgroup_subsys *ss;  struct kernfs_node *kn;  int ssid, ret;
  /* Do not accept '
' to prevent making /proc//cgroup unparsable.   */  if (strchr(name, '
'))    return -EINVAL;
  parent = cgroup_kn_lock_live(parent_kn);  if (!parent)    return -ENODEV;  root = parent->root;
  /* allocate the cgroup and its ID, 0 is reserved for the root */  /* (1) 分配新的cgroup */  cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);  if (!cgrp) {    ret = -ENOMEM;    goto out_unlock;  }
  ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);  if (ret)    goto out_free_cgrp;
  /*   * Temporarily set the pointer to NULL, so idr_find() won't return   * a half-baked cgroup.   */  cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);  if (cgrp->id < 0) {    ret = -ENOMEM;    goto out_cancel_ref;  }
    /* (2) 初始化cgroup */  init_cgroup_housekeeping(cgrp);
    /* (3) 和父cgroup之间建立起关系 */  cgrp->self.parent = &parent->self;  cgrp->root = root;
  if (notify_on_release(parent))    set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
  if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))    set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
  /* create the directory */  /* (3) 创建新的cgroup对应的文件夹 */  kn = kernfs_create_dir(parent->kn, name, mode, cgrp);  if (IS_ERR(kn)) {    ret = PTR_ERR(kn);    goto out_free_id;  }  cgrp->kn = kn;
  /*   * This extra ref will be put in cgroup_free_fn() and guarantees   * that @cgrp->kn is always accessible.   */  kernfs_get(kn);
  cgrp->self.serial_nr = css_serial_nr_next++;
  /* allocation complete, commit to creation */  list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);  atomic_inc(&root->nr_cgrps);  cgroup_get(parent);
  /*   * @cgrp is now fully operational.  If something fails after this   * point, it'll be released via the normal destruction path.   */  cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
  ret = cgroup_kn_set_ugid(kn);  if (ret)    goto out_destroy;
    /* (4) 新cgroup文件夹下创建cgroup自己css对应的默认file */  ret = css_populate_dir(&cgrp->self, NULL);  if (ret)    goto out_destroy;
  /* let's create and online css's */  /* (5) 针对root对应的各个susbsys, 每个subsys创建新的css      并且在cgroup文件夹下创建css对应的file  */  for_each_subsys(ss, ssid) {    if (parent->child_subsys_mask & (1 << ssid)) {      ret = create_css(cgrp, ss,           parent->subtree_control & (1 << ssid));      if (ret)        goto out_destroy;    }  }
  /*   * On the default hierarchy, a child doesn't automatically inherit   * subtree_control from the parent.  Each is configured manually.   */  if (!cgroup_on_dfl(cgrp)) {    cgrp->subtree_control = parent->subtree_control;    cgroup_refresh_child_subsys_mask(cgrp);  }
  kernfs_activate(kn);
  ret = 0;  goto out_unlock;
out_free_id:  cgroup_idr_remove(&root->cgroup_idr, cgrp->id);out_cancel_ref:  percpu_ref_exit(&cgrp->self.refcnt);out_free_cgrp:  kfree(cgrp);out_unlock:  cgroup_kn_unlock(parent_kn);  return ret;
out_destroy:  cgroup_destroy_locked(cgrp);  goto out_unlock;}

cgroup默认文件,有一些重要的文件比如“tasks”,我们来看看具体的操作。

static struct cftype cgroup_legacy_base_files[] = {  {    .name = "cgroup.procs",    .seq_start = cgroup_pidlist_start,    .seq_next = cgroup_pidlist_next,    .seq_stop = cgroup_pidlist_stop,    .seq_show = cgroup_pidlist_show,    .private = CGROUP_FILE_PROCS,    .write = cgroup_procs_write,  },  {    .name = "cgroup.clone_children",    .read_u64 = cgroup_clone_children_read,    .write_u64 = cgroup_clone_children_write,  },  {    .name = "cgroup.sane_behavior",    .flags = CFTYPE_ONLY_ON_ROOT,    .seq_show = cgroup_sane_behavior_show,  },  {    .name = "tasks",    .seq_start = cgroup_pidlist_start,    .seq_next = cgroup_pidlist_next,    .seq_stop = cgroup_pidlist_stop,    .seq_show = cgroup_pidlist_show,    .private = CGROUP_FILE_TASKS,    .write = cgroup_tasks_write,  },  {    .name = "notify_on_release",    .read_u64 = cgroup_read_notify_on_release,    .write_u64 = cgroup_write_notify_on_release,  },  {    .name = "release_agent",    .flags = CFTYPE_ONLY_ON_ROOT,    .seq_show = cgroup_release_agent_show,    .write = cgroup_release_agent_write,    .max_write_len = PATH_MAX - 1,  },  { }  /* terminate */}
static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,          char *buf, size_t nbytes, loff_t off){  return __cgroup_procs_write(of, buf, nbytes, off, false);}
|→
static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,            size_t nbytes, loff_t off, bool threadgroup){  struct task_struct *tsk;  struct cgroup_subsys *ss;  struct cgroup *cgrp;  pid_t pid;  int ssid, ret;
  if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)    return -EINVAL;
  cgrp = cgroup_kn_lock_live(of->kn);  if (!cgrp)    return -ENODEV;
  percpu_down_write(&cgroup_threadgroup_rwsem);  rcu_read_lock();  if (pid) {    tsk = find_task_by_vpid(pid);    if (!tsk) {      ret = -ESRCH;      goto out_unlock_rcu;    }  } else {    tsk = current;  }
  if (threadgroup)    tsk = tsk->group_leader;
  /*   * Workqueue threads may acquire PF_NO_SETAFFINITY and become   * trapped in a cpuset, or RT worker may be born in a cgroup   * with no rt_runtime allocated.  Just say no.   */  if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {    ret = -EINVAL;    goto out_unlock_rcu;  }
  get_task_struct(tsk);  rcu_read_unlock();
  ret = cgroup_procs_write_permission(tsk, cgrp, of);  if (!ret) {      /* (1) attach task到cgroup */    ret = cgroup_attach_task(cgrp, tsk, threadgroup);#if defined(CONFIG_CPUSETS) && !defined(CONFIG_MTK_ACAO)    if (cgrp->id != SS_TOP_GROUP_ID && cgrp->child_subsys_mask == CSS_CPUSET_MASK    && excl_task_count > 0) {      remove_set_exclusive_task(tsk->pid, 0);    }#endif  }  put_task_struct(tsk);  goto out_unlock_threadgroup;
out_unlock_rcu:  rcu_read_unlock();out_unlock_threadgroup:  percpu_up_write(&cgroup_threadgroup_rwsem);  for_each_subsys(ss, ssid)    if (ss->post_attach)      ss->post_attach();  cgroup_kn_unlock(of->kn);  return ret ?: nbytes;}
||→
static int cgroup_attach_task(struct cgroup *dst_cgrp,            struct task_struct *leader, bool threadgroup){  LIST_HEAD(preloaded_csets);  struct task_struct *task;  int ret;
  /* look up all src csets */  spin_lock_bh(&css_set_lock);  rcu_read_lock();  task = leader;    /* (1.1) 遍历task所在线程组,把需要迁移的进程的css_set加入到preloaded_csets链表 */  do {    cgroup_migrate_add_src(task_css_set(task), dst_cgrp,               &preloaded_csets);    if (!threadgroup)      break;  } while_each_thread(leader, task);  rcu_read_unlock();  spin_unlock_bh(&css_set_lock);
    /* (1.2) 去掉旧的css_set对css的应用,         分配新的css_set承担新的css组合的应用,并且给进程使用     */  /* prepare dst csets and commit */  ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);  if (!ret)    ret = cgroup_migrate(leader, threadgroup, dst_cgrp);
  cgroup_migrate_finish(&preloaded_csets);  return ret;}

1.3、cgroup subsystem

我们关注cgroup子系统具体能提供的功能。

1.3.1、cpu

kernel/sched/core.c。会创建新的task_group,可以对cgroup对应的task_group进行cfs/rt类型的带宽控制。

static struct cftype cpu_files[] = {#ifdef CONFIG_FAIR_GROUP_SCHED  {    .name = "shares",    .read_u64 = cpu_shares_read_u64,    .write_u64 = cpu_shares_write_u64,  },#endif#ifdef CONFIG_CFS_BANDWIDTH     // cfs 带宽控制  {    .name = "cfs_quota_us",    .read_s64 = cpu_cfs_quota_read_s64,    .write_s64 = cpu_cfs_quota_write_s64,  },  {    .name = "cfs_period_us",    .read_u64 = cpu_cfs_period_read_u64,    .write_u64 = cpu_cfs_period_write_u64,  },  {    .name = "stat",    .seq_show = cpu_stats_show,  },#endif#ifdef CONFIG_RT_GROUP_SCHED    // rt 带宽控制  {    .name = "rt_runtime_us",    .read_s64 = cpu_rt_runtime_read,    .write_s64 = cpu_rt_runtime_write,  },  {    .name = "rt_period_us",    .read_u64 = cpu_rt_period_read_uint,    .write_u64 = cpu_rt_period_write_uint,  },#endif  { }  /* terminate */};
struct cgroup_subsys cpu_cgrp_subsys = {  .css_alloc  = cpu_cgroup_css_alloc,         // 分配新的task_group  .css_released  = cpu_cgroup_css_released,  .css_free  = cpu_cgroup_css_free,  .fork    = cpu_cgroup_fork,  .can_attach  = cpu_cgroup_can_attach,  .attach    = cpu_cgroup_attach,  .legacy_cftypes  = cpu_files,  .early_init  = 1,};

1.3.2、cpuset

kernel/cpusec.c。给cgroup分配不同的cpu和mem node节点,还可以配置一些flag。

static struct cftype files[] = {  {    .name = "cpus",    .seq_show = cpuset_common_seq_show,    .write = cpuset_write_resmask,    .max_write_len = (100U + 6 * NR_CPUS),    .private = FILE_CPULIST,  },
  {    .name = "mems",    .seq_show = cpuset_common_seq_show,    .write = cpuset_write_resmask,    .max_write_len = (100U + 6 * MAX_NUMNODES),    .private = FILE_MEMLIST,  },
  {    .name = "effective_cpus",    .seq_show = cpuset_common_seq_show,    .private = FILE_EFFECTIVE_CPULIST,  },
  {    .name = "effective_mems",    .seq_show = cpuset_common_seq_show,    .private = FILE_EFFECTIVE_MEMLIST,  },
  {    .name = "cpu_exclusive",    .read_u64 = cpuset_read_u64,    .write_u64 = cpuset_write_u64,    .private = FILE_CPU_EXCLUSIVE,  },
  {    .name = "mem_exclusive",    .read_u64 = cpuset_read_u64,    .write_u64 = cpuset_write_u64,    .private = FILE_MEM_EXCLUSIVE,  },
  {    .name = "mem_hardwall",    .read_u64 = cpuset_read_u64,    .write_u64 = cpuset_write_u64,    .private = FILE_MEM_HARDWALL,  },
  {    .name = "sched_load_balance",    .read_u64 = cpuset_read_u64,    .write_u64 = cpuset_write_u64,    .private = FILE_SCHED_LOAD_BALANCE,  },
  {    .name = "sched_relax_domain_level",    .read_s64 = cpuset_read_s64,    .write_s64 = cpuset_write_s64,    .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,  },
  {    .name = "memory_migrate",    .read_u64 = cpuset_read_u64,    .write_u64 = cpuset_write_u64,    .private = FILE_MEMORY_MIGRATE,  },
  {    .name = "memory_pressure",    .read_u64 = cpuset_read_u64,  },
  {    .name = "memory_spread_page",    .read_u64 = cpuset_read_u64,    .write_u64 = cpuset_write_u64,    .private = FILE_SPREAD_PAGE,  },
  {    .name = "memory_spread_slab",    .read_u64 = cpuset_read_u64,    .write_u64 = cpuset_write_u64,    .private = FILE_SPREAD_SLAB,  },
  {    .name = "memory_pressure_enabled",    .flags = CFTYPE_ONLY_ON_ROOT,    .read_u64 = cpuset_read_u64,    .write_u64 = cpuset_write_u64,    .private = FILE_MEMORY_PRESSURE_ENABLED,  },
  { }  /* terminate */}
struct cgroup_subsys cpuset_cgrp_subsys = {  .css_alloc  = cpuset_css_alloc,  .css_online  = cpuset_css_online,  .css_offline  = cpuset_css_offline,  .css_free  = cpuset_css_free,  .can_attach  = cpuset_can_attach,  .cancel_attach  = cpuset_cancel_attach,  .attach    = cpuset_attach,  .post_attach  = cpuset_post_attach,  .bind    = cpuset_bind,  .fork    = cpuset_fork,  .legacy_cftypes  = files,  .early_init  = 1,};

1.3.3、schedtune

kernel/sched/tune.c,可以进行schedle boost操作。

static struct cftype files[] = {  {    .name = "boost",    .read_u64 = boost_read,    .write_u64 = boost_write,  },  {    .name = "prefer_idle",    .read_u64 = prefer_idle_read,    .write_u64 = prefer_idle_write,  },  { }  /* terminate */};
struct cgroup_subsys schedtune_cgrp_subsys = {  .css_alloc  = schedtune_css_alloc,  .css_free  = schedtune_css_free,  .legacy_cftypes  = files,  .early_init  = 1,};

1.3.4、cpuacct

kernel/sched/cpuacct.c,可以按照cgroup的分组来统计cpu占用率。

static struct cftype files[] = {  {    .name = "usage",    .read_u64 = cpuusage_read,    .write_u64 = cpuusage_write,  },  {    .name = "usage_percpu",    .seq_show = cpuacct_percpu_seq_show,  },  {    .name = "stat",    .seq_show = cpuacct_stats_show,  },  { }  /* terminate */};
struct cgroup_subsys cpuacct_cgrp_subsys = {  .css_alloc  = cpuacct_css_alloc,  .css_free  = cpuacct_css_free,  .legacy_cftypes  = files,  .early_init  = 1,};

原文标题:Linux schedule 之 Cgroup

文章出处:【微信公众号:Linux阅码场】欢迎添加关注!文章转载请注明出处。

审核编辑:汤梓红
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • Linux
    +关注

    关注

    87

    文章

    11292

    浏览量

    209328
  • 数据结构
    +关注

    关注

    3

    文章

    573

    浏览量

    40123
  • 文件夹
    +关注

    关注

    0

    文章

    14

    浏览量

    8163

原文标题:Linux schedule 之 Cgroup

文章出处:【微信号:LinuxDev,微信公众号:Linux阅码场】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    详细了解JTAG接口

    在FPGA研发及学习过程中,有个关键步骤就是下板实现,做硬件“硬现”很重要,般来说用JTAG口比较常见些,因此相信肯定有些大侠遇到过JTAG口失灵或者损坏无法使用的事情。最近我就遇到了这类事情
    发表于 07-20 09:15 1.2w次阅读

    了解MyBatis的查询原理

    可以详细了解MyBatis的次查询过程。在平时的代码编写中,发现了MyBatis个低版本的bug(3.4.5之前的版本),由于现在很多工程中的版本都是低于3.4.5的,因此在这里用
    的头像 发表于 10-10 11:42 1422次阅读

    用VDK+BF537开发产品中,想详细了解下VDK中事件、事件bit、信号量的使用方法,以及如何写自己的device drivers

    用VDK+BF537开发产品中,想详细了解下VDK中事件、事件bit、信号量的使用方法,以及如何写自己的device drivers。请问哪有针对上述问题的资料下载?
    发表于 12-06 09:19

    详细了解下ups的相关计算

    关于ups方面的计算有很多,ups无论是接空开,还是连接电缆,以及选择电池,都可能需要计算它的电流或功率等,那么今天我们来详细了解下ups的相关计算。、UPS电源及电流、高频ups与工频ups
    发表于 11-16 09:08

    详细了解下STM32F1的具体电路参数

    最近笔者在使用STM32时,需要详细了解下F1的具体电路参数。于是查看其官方数据手册,结果记录如下。绝对最大额度值般工作条件表中的FT指5V 耐压。可以在引脚定义表格中看到。I/O端口特性(逻辑电平)在最后
    发表于 01-18 07:07

    通过 iftop、 nethogs 和 vnstat 详细了解你的网络连接状态

    通过 iftop、 nethogs 和 vnstat 详细了解你的网络连接状态。
    的头像 发表于 01-27 21:10 2.1w次阅读
    通过 iftop、 nethogs 和 vnstat <b class='flag-5'>详细了解</b>你的网络连接状态

    详细了解HarmonyOS工程

    华为云享专家,InfoQ签约作者,阿里云专家博主,51CTO博客首席体验官,开源项目GVA成员之,专注于大前端技术的分享,包括Flutter,小程序,安卓,VUE,JavaScript。
    的头像 发表于 02-28 10:53 1406次阅读
    <b class='flag-5'>一</b><b class='flag-5'>文</b><b class='flag-5'>详细了解</b>HarmonyOS工程

    详细了解OpenHarmony新图形框架

    3月30日,OpenHarmony v3.1 Release版本正式发布了。此版本为大家带来了全新的图形框架,实现了UI框架显示、多窗口、流畅动画等基础能力,夯实了OpenHarmony系统能力基座。下面就带大家详细了解新图形框架。
    的头像 发表于 04-27 13:21 2207次阅读
    <b class='flag-5'>一</b><b class='flag-5'>文</b><b class='flag-5'>详细了解</b>OpenHarmony新图形框架

    详细了解HTTP协议

    Http协议即超文本传送协议 (HTTP-Hypertext transfer protocol) 。
    的头像 发表于 05-11 12:04 1698次阅读

    详细了解CCIX规范

    正文开始前,闲扯几句。在接下来分析CCIX规范的过程中,大家会发现CCIX里面有太多ARM的影子,尤其是协议层的致性协议部分,你会看到有很多跟CHI相似的东西。另外,在CCIX规范的底层,基本全是复用和遵循PCIe规范。
    的头像 发表于 06-23 09:20 2020次阅读

    详细了解接地

    很少有电子学主题像接地主题那样产生如此多的错误信息和混乱。本文的目的是阐明什么是基础,以及为什么它如此重要。
    的头像 发表于 09-07 10:26 1781次阅读

    详细了解类型体操

    在背景章节介绍的是什么是类型,什么是类型安全,怎么实现类型安全,什么是类型体操?
    的头像 发表于 09-27 10:07 2048次阅读

    如何在Kubernetes中快速启用Cgroup V2支持

    Linux 中有两个 cgroup 版本:cgroup v1 和 cgroup v2。cgroup v2 是新代的
    的头像 发表于 01-29 11:22 1097次阅读

    带您详细了解IEEE802.3bt(PoE++)的有关特点

    Hqst华强盛(盈盛电子)导读:带您详细了解IEEE802.3bt(PoE++)的有关特点,让我们对IEEE802.3bt(PoE++)协议有更具体的了解
    的头像 发表于 01-04 11:26 2157次阅读
    带您<b class='flag-5'>一</b>起<b class='flag-5'>详细了解</b>IEEE802.3bt(PoE++)的有关特点

    带你详细了解工业电脑

    扇设计、承受振动和恶劣环境的能力、轻松配置、全面的I/O选项、延长生命周期、耐用的组件。了解如何为您的应用选择工业电脑对提高设施的生产力和效率至关重要。详细了解
    的头像 发表于 06-12 14:24 401次阅读
    <b class='flag-5'>一</b><b class='flag-5'>文</b>带你<b class='flag-5'>详细了解</b>工业电脑