0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

人工智能与物联网实现数据的实时处理能力

星星科技指导员 来源:Renesas 作者: Mohammed Dogar 2022-04-22 15:35 2198次阅读

物联网IoT)不仅改变我们的日常生活,还会影响我们人类社会的点点滴滴。从智能家居到未来的工厂,联网设备的数量持续快速增长。据 IDC 估计,到 2025 年将有超过557亿的入网设备,其中 75% 将连接到物联网平台。这将导致这些设备生成的数据流,从 2019 年的 18.3 ZB 增长到 2025 年73.1 ZB的预估值。既时,AI人工智能)的高效算法将会在不同方面有效克服物联网部署及应用中的挑战。人工智能和物联网设备的优势能够确保对数据的系统性计算分析,但也带来延迟和安全漏洞等问题。现在技术已经可以在成功的创建分布式智能动态网络的同时实现数据的实时处理能力。

图像

什么是 AIoT?

智能物联网 (AIoT) 是一个相对较新的术语,但已风靡全球。它是新兴技术中的两大巨头——人工智能 (AI) 和物联网 (IoT) 的结合,旨在实现更高效的物联网运营、改善人机交互并增进数据管理和分析。物联网是由相互连接的设备组成,由众多的传感器,生成并收集大量数据。人工智能能够让机器基于之前的经验来执行任务。它也可以将物联网数据转换为有用的信息,然后可以适时有效地使用这些数据做适当的决策。人工智能和物联网具有互惠关系——人工智能得益于“大数据”的可用性,而物联网则受益于机器学习的能力。

在AIoT 中, AI 可以嵌入到IoT 基础设施组件中,并使用 API (应用程序接口)来实现这些处于不同层级组件之间的操互性和可靠性。这种运行机制侧重于改进系统以及网络的功能性和可操作性,通过数据管理抽取背后的价值。由于人工智能、物联网的系统结合,数据分析的价值随着“智能”的介入而提升。例如,物联网边缘生成的数据,可以让机器自主地在边缘完成任务。为了更清楚地说明 AI 和 IoT 的互融,下图显示了数据的生命周期。物联网负责使用感知层中的传感器捕获数据。然后在网络层中进行数据传输,接着通过数据聚合把数据集成在一起。再通过物联网平台对集成数据跟进分析。最后,根据分析结果,在业务/应用层做相应操作。物联网的本质价值是由应用层“决策”的价值决定的,这主要取决于上一步以人工智能为背景介入的“数据分析”的结果。

图像

人工智能:为物联网增值

将人工智能从云端集成到物联网甚至到物联网的节点端,可以进一步改善运营状态和整体系统效率,支持物联网可扩展性并通过有效的风险管理降低风险。尽最大可能地减少紧急停机状况,来帮助降低总运营成本,反过来意味着提高可用性。

要能在节点上做高效的AI推断,需要一种革新性的方式来管理信息:积累相关数据,并在本地设备上做出决策。

为了在节点采用更有效的人工智能 (AI)、机器学习 (ML) 或深度学习 (DL),你需要好用的硬件来执行核心系统任务以及相关算法,同时还要满足对性能和功耗的需求。为物联网IoT设计而生的微控制器,集成所需CPU 性能、智能又省电的外设和强壮的硬件安全引擎,能有效帮助AIoT 的应用。然而,除了硬件本身,我们还需要经过优化的支持机器学习模型的中间件,才能确保AIoT应用在这些资源受限设备上的顺利运行。

基于物联网微控制器单元组成的智能物联网设备,它在物联网边缘负责收集和处理大量数据。从边缘到云端的数据传输、数据处理需要更优的性能、安全的通信,以及高能效。将能耗保持在非常低的水平是大规模部署物联网设备的重要环节。微型机器学习TinyML可以在嵌入式节点设备上优化并且高效运行复杂的AI/ML模型。

现在让我们更深入地了解TinyML的演进和在节点设备上的应用,以及AIoT在不同阶段的应用情况。

第 1 阶段:人工智能和云端服务:

起初,只在云端做神经网络训练和托管机器学习模型,这势必需要强大的算力以及复杂的任务管理能力。微控制器单元在物联网中负责管理传感器和执行器。如下图所示,在云端运行的AI模型所需的数据,是源于物联网,而将海量数据传输到云端的过程中,会给网络带宽带来很大压力。导致的传输延迟和资源耗损,恰恰不适合实时控制和关键的安全应用。

图像

第 2 阶段:人工智能和边缘计算:

为了提高系统效率和决策能力,我们现在能够在物联网边缘网关或终端节点本地运行 AI 模型。然而,对于资源受限的边缘设备,机器学习模型的训练仍然需要在云端进行。经过训练后的模型部署在边缘设备中。这种方式得益于云端超强的算力(用于训练)和边缘计算的低延迟性(更及时的执行)。

图像

第 3 阶段:端点的智能嵌入:

在这个阶段,物联网产品的设计人员将机器学习模块直接嵌入到微控制器中;不再需要边缘网关或者云端去做决策响应。

图像

但是,必须确保在微控制器单元MCU上运行的此类机器学习模型足够的轻量化,以实现更快的执行效果。这就是 TinyML 发挥作用的地方,因为它不需要很多资源即可工作,特别适合物联网资源受限设备。简而言之,TinyML 有助于优化资源、降低成本、提高能效和数据安全性,并最终降低系统延迟。这催生了分布式智能,并加速AIoT在各种应用领域的扩展。

让我们看一下Renesas可以帮助实现高效 AIoT 解决方案的一些例子;工业领域中可预测维护,在设备中嵌入相关机器学习模型将有助于实时检测问题并采取相应措施。

模式识别:这是一种图像或语音识别模型,可以在检测到某些单词或指令时让系统做出改变。

智能医疗:智能预诊、医疗状况监测和实时分析、高效图像识别进行快速治疗等等。

可穿戴智能设备:应用种类繁多,从智能手表到运动追踪器,以及各种监控设备。

智能物联网AIoT 的出现跨越了许多新技术和应用,为人类生活的各个领域开启了前所未有的可能性。为更广泛地采用 AIoT, 需要在连接性、安全性和先进技术开发方面进行协作和标准化,以此来解决所面对的各种困难。

在广泛开发数十亿智能设备的过程中,它创造了前所未有的新业务流和新应用。 让我们释放创造力,因为它会给我们带来超乎想象的未来。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 物联网
    +关注

    关注

    2910

    文章

    44778

    浏览量

    374686
  • Renesas
    +关注

    关注

    0

    文章

    1757

    浏览量

    22821
  • AIoT
    +关注

    关注

    8

    文章

    1414

    浏览量

    30765
收藏 人收藏

    相关推荐

    联网就业有哪些高薪岗位?

    进行分析和挖掘,提供有价值的信息和见解,以支持决策和业务发展。对于数据科学和人工智能有深入了解的数据分析专家,将迎来更多的高薪岗位机会。 联网
    发表于 01-10 16:47

    嵌入式和人工智能究竟是什么关系?

    人工智能应用的实时响应。与此同时,嵌入式系统在边缘计算和联网领域,也为人工智能的应用提供了广阔的空间。 在边缘计算中,嵌入式系统能够将
    发表于 11-14 16:39

    人工智能与联网:重塑现代商业的双剑合璧

    人工智能(AI)与联网(IoT)作为两种前沿的动态技术,正以前所未有的速度改变着我们的现状。从库存管理、个性化购物体验到数据挖掘,它们共同重塑了当今的商业运作模式。   简而言
    的头像 发表于 11-06 11:09 440次阅读

    《AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    、优化等方面的应用有了更清晰的认识。特别是书中提到的基于大数据和机器学习的能源管理系统,通过实时监测和分析能源数据实现了能源的高效利用和智能
    发表于 10-14 09:27

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    阅读这一章后,我深感人工智能与生命科学的结合正引领着一场前所未有的科学革命,以下是我个人的读后感: 1. 技术革新与生命科学进步 这一章详细阐述了人工智能如何通过其强大的数据处理和分析能力
    发表于 10-14 09:21

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    人工智能:科学研究的加速器 第一章清晰地阐述了人工智能作为科学研究工具的强大功能。通过机器学习、深度学习等先进技术,AI能够处理和分析海量数据,发现传统方法难以捕捉的模式和规律。这不
    发表于 10-14 09:12

    risc-v在人工智能图像处理应用前景分析

    人工智能推荐系统中强大的图形处理器(GPU)一争高下。其独特的设计使得该处理器在功耗受限的条件下仍能实现高性能的图像处理任务。 Cerem
    发表于 09-28 11:00

    安富利携手恩智浦推出人工智能解决方案

    联网(IoT)和工业4.0时代,数据的海量化与实时处理需求日益增长,对边缘计算设备提出了前所未有的挑战。对此,安富利携手恩智浦,基于创新的MCX-N系列微控制器,推出一系列“开箱即
    的头像 发表于 08-01 10:38 1424次阅读
    安富利携手恩智浦推出<b class='flag-5'>人工智能</b>解决方案

    FPGA在人工智能中的应用有哪些?

    FPGA(现场可编程门阵列)在人工智能领域的应用非常广泛,主要体现在以下几个方面: 一、深度学习加速 训练和推理过程加速:FPGA可以用来加速深度学习的训练和推理过程。由于其高并行性和低延迟特性
    发表于 07-29 17:05

    人工智能与大模型的关系与区别

    在科技日新月异的今天,人工智能(AI)已成为推动社会进步的重要力量。而在人工智能的众多分支中,大模型(Large Models)作为近年来兴起的概念,以其巨大的参数数量和强大的计算能力,在多个领域展现出了非凡的潜力。本文旨在深入
    的头像 发表于 07-04 16:07 3844次阅读

    5G智能联网课程之Aidlux下人工智能开发(SC171开发套件V2)

    5G智能联网课程之Aidlux下人工智能开发(SC171开发套件V2) 课程类别 课程名称 视频课程时长 视频课程链接 课件链接 人工智能
    发表于 05-10 16:46

    5G智能联网课程之Aidlux下人工智能开发(SC171开发套件V1)

    ://t.elecfans.com/v/25653.html 人工智能 初学者完整学习流程实现手写数字识别案例 28分55秒 https://t.elecfans.com/v/27184.html
    发表于 04-01 10:40

    创龙教仪基于瑞芯微3568的ARM Cortex A-55教学实验箱 适用于人工智能 传感器 联网等领域

    界面。 适用于嵌入式系统、联网、无线传感器、人工智能等教学领域。 实验板硬件参数 配套模块 软件资源
    发表于 03-22 14:29

    NanoEdge AI的技术原理、应用场景及优势

    NanoEdge AI 是一种基于边缘计算的人工智能技术,旨在将人工智能算法应用于联网(IoT)设备和传感器。这种技术的核心思想是将数据处理
    发表于 03-12 08:09

    嵌入式人工智能的就业方向有哪些?

    联网ARM开发 NB-IoT开发及实战 七:python工程师,人工智能工程师 python语法基础 python核心编程 基于OpenCV的机器视觉开发 嵌入式人工智能渗入生活的方方面面,广泛应用
    发表于 02-26 10:17