0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于深度神经网络开发AI编译器

星星科技指导员 来源:瑞萨电子 作者:Yuki Inoue 2022-04-24 15:18 次阅读

概述

我们正在开发的 AI 编译器是可以从预训练的深度神经网络瑞萨的 R-Car 设备生成高性能可执行代码的软件。

背景

实时执行 CNN 推理是一项非常具有挑战性的工作,因为嵌入式硬件在计算和功耗的硬件资源方面面临着严格的限制。为了在 R-Car V 系列设备上有效地执行 CNN 推理,瑞萨设计了异构架构,该架构分为可编程处理器CPU) 和专用于计算网络各层的加速器。

至于AI编译器,常见的软件架构包含两部分:编译器“前端”和编译器“后端”,如图所示。深度神经网络在 AI 编译器中被翻译成多级 IR。编译器前端负责与硬件无关的转换(图 IR)和图优化,而编译器后端负责特定于硬件的优化、代码生成。

例子

瑞萨主要开发硬件相关的优化算法,最大限度地利用R-Car V系列的异构架构。为了进一步提高性能,有必要了解与深度神经网络相关的最新论文,并与工程师进行技术讨论。我们正在寻找该领域积极进取的工程师。

结论

深度神经网络是近年来得到广泛研究并不断发展的技术领域之一。瑞萨将提供先进的人工智能工具来协助自动驾驶技术的发展。

图像

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4733

    浏览量

    100412
  • AI
    AI
    +关注

    关注

    87

    文章

    29784

    浏览量

    268074
  • 编译器
    +关注

    关注

    1

    文章

    1617

    浏览量

    49014
收藏 人收藏

    评论

    相关推荐

    FPGA在深度神经网络中的应用

    随着人工智能技术的飞速发展,深度神经网络(Deep Neural Network, DNN)作为其核心算法之一,在图像识别、语音识别、自然语言处理等领域取得了显著成果。然而,传统的深度神经网络
    的头像 发表于 07-24 10:42 525次阅读

    AI编译器技术剖析

    随着人工智能技术的飞速发展,AI编译器作为一种新兴的编译技术逐渐进入人们的视野。AI编译器不仅具备传统
    的头像 发表于 07-17 18:28 1398次阅读

    残差网络深度神经网络

    残差网络(Residual Network,通常简称为ResNet) 是深度神经网络的一种 ,其独特的结构设计在解决深层网络训练中的梯度消失和梯度爆炸问题上取得了显著的突破,并因此成为
    的头像 发表于 07-11 18:13 932次阅读

    pytorch中有神经网络模型吗

    处理、语音识别等领域取得了显著的成果。PyTorch是一个开源的深度学习框架,由Facebook的AI研究团队开发。它以其易用性、灵活性和高效性而受到广泛欢迎。在PyTorch中,有许多预训练的
    的头像 发表于 07-11 09:59 600次阅读

    简单认识深度神经网络

    深度神经网络(Deep Neural Networks, DNNs)作为机器学习领域中的一种重要技术,特别是在深度学习领域,已经取得了显著的成就。它们通过模拟人类大脑的处理方式,利用多层神经
    的头像 发表于 07-10 18:23 891次阅读

    深度神经网络概述及其应用

    深度神经网络(Deep Neural Networks, DNNs)作为机器学习的一种复杂形式,是广义人工神经网络(Artificial Neural Networks, ANNs)的重要分支。它们
    的头像 发表于 07-04 16:08 632次阅读

    循环神经网络和卷积神经网络的区别

    循环神经网络(Recurrent Neural Network,RNN)和卷积神经网络(Convolutional Neural Network,CNN)是深度学习领域中两种非常重要的神经网络
    的头像 发表于 07-04 14:24 1007次阅读

    深度神经网络与基本神经网络的区别

    在探讨深度神经网络(Deep Neural Networks, DNNs)与基本神经网络(通常指传统神经网络或前向神经网络)的区别时,我们需
    的头像 发表于 07-04 13:20 563次阅读

    深度神经网络的设计方法

    深度神经网络(Deep Neural Networks, DNNs)作为人工智能领域的重要技术之一,通过模拟人脑神经元之间的连接,实现了对复杂数据的自主学习和智能判断。其设计方法不仅涉及网络
    的头像 发表于 07-04 13:13 366次阅读

    bp神经网络深度神经网络

    BP神经网络(Backpropagation Neural Network)是一种常见的前馈神经网络,它使用反向传播算法来训练网络。虽然BP神经网络在某些方面与
    的头像 发表于 07-03 10:14 583次阅读

    深度学习与卷积神经网络的应用

    随着人工智能技术的飞速发展,深度学习和卷积神经网络(Convolutional Neural Network, CNN)作为其中的重要分支,已经在多个领域取得了显著的应用成果。从图像识别、语音识别
    的头像 发表于 07-02 18:19 740次阅读

    卷积神经网络和bp神经网络的区别

    化能力。随着深度学习技术的不断发展,神经网络已经成为人工智能领域的重要技术之一。卷积神经网络和BP神经
    的头像 发表于 07-02 14:24 2303次阅读

    深度神经网络模型有哪些

    模型: 多层感知(Multilayer Perceptron,MLP): 多层感知是最基本的深度神经网络模型,由多个全连接层组成。每个隐藏层的
    的头像 发表于 07-02 10:00 1038次阅读

    利用深度循环神经网络对心电图降噪

    具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI 我们提出了一种利用由长短期记忆 (LSTM) 单元构建的深度循环
    发表于 05-15 14:42

    详解深度学习、神经网络与卷积神经网络的应用

    在如今的网络时代,错综复杂的大数据和网络环境,让传统信息处理理论、人工智能与人工神经网络都面临巨大的挑战。近些年,深度学习逐渐走进人们的视线,通过
    的头像 发表于 01-11 10:51 1827次阅读
    详解<b class='flag-5'>深度</b>学习、<b class='flag-5'>神经网络</b>与卷积<b class='flag-5'>神经网络</b>的应用