0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

超分辨高精度显微镜3D成像模块的应用说明

昊量光电 来源:昊量光电 作者:昊量光电 2022-04-24 16:51 次阅读

光学显微镜凭借其非接触、无损伤等优点,成为生物学家研究细胞功能结构、蛋白网络结构、DNA等遗传物质、细胞器以及膜结构等应用必不可少的工具,然而衍射极限的存在,使得人们无法清晰地观察到横向尺寸小于200nm、轴向尺寸小于500nm的细胞结构。二十一世纪初期,具有纳米尺度分辨率的超分辨光学显微成像技术的出现,使得研究人员可以在更高的分辨率水平进行生物研究。在超分辨显微技术飞速发展的同时,现有成像技术的缺陷也日益显现,例如成像分辨率和成像时间不可兼得;对透镜制造技术提出了一定要求的同时,也限制了观测的视野;日益复杂的设备使得操作和维护也越来越困难等。

为解决上述问题,美国Double Helix Optics公司提出了纳米级分辨率成像的新概念-“SPINDLE”,不仅突破了衍射极限,还可以实现三维成像,可捕捉到小至横向尺寸10 nm、轴向尺寸15 nm的细节。在该技术中,SPINDLE模块被安装在显微镜和ccd或相机之间,无需改变现有成像系统设置。基于特殊设计的相位掩模版,从工程化点扩散函数 (E-PSF)出发,使用螺旋相位掩模板来控制景深、发射波长和精度,结合3DTRAX软件对3D图像进行重建和分析,可在不需要扫描的条件下即时捕获 3D 信息,得到无与伦比的深度和精度3D图像,横向精度可达20nm, 轴向精度可达25nm,成像深度可达20um。当与其他工具和技术,包括STORM、PALM、SOFI、光片显微、宽场、宽场显微、TIRF、FRET等一起使用时,可释放巨大的潜力,适用于活细胞、固定细胞和全细胞成像、单分子、粒子跟踪和粒子计数等应用。

poYBAGJlDUKAGDVlAAIn0QB7sII001.png

图1:SPINDLE2双通道显微镜模块,用于同时多色、多深度3D成像

SPINDLE2可以被很容易地安装到现有显微镜和CCD或相机之间,内置旁路模式可轻松返回到非3D光路,是实现单发超分辨和3D宽场成像的理想解决方案。

poYBAGJlDZuACjYyAAP8iljgnPE655.png

图2:非洲绿猴肾细胞的3D 图像,微管和肌动蛋白分别标记,两种颜色同时成像

在SPINDLE模块中,最核心的是经过特殊设计的相位掩模板,其尺寸和设计需和光学系统和成像条件相匹配。这些相位掩模板将单一物体发出的光分裂成两个独立的旋转的光瓣,类似于双螺旋。两瓣的中点对应物体发光源的横向位置,两瓣的夹角对应发光源的轴向位置。由于旋转180°时光斑可以保持聚焦,因此可以高精度地获取发光“点”的深度信息。收集的数据由许多这些在不同方向上与物体横向和轴向位置相对应的分离良好的点组成。经过对这些详细的目标点数据集处理和图像重建创建,即可得到超高分辨率原始物体清晰的三维结构。

pYYBAGJlDiqAadUrAAFFLv8PR3s189.png

图3:工程化相位掩模板通过每帧成像更大的体积来节省时间和存储空间,并降低感光度

丰富多样的相位掩模板库,包括双螺旋,单螺旋,EDOF,四足,和多色设计以提供最大的控制和灵活性。用户可依据深度范围、波长和其他光学参数选择合适的相位掩模版以满足最佳的深度-精度平衡。

3DTRAX® 软件用于计算每个粒子的z位置,运行专有算法以自动进行3D定位,以‹20 nm的深度和分辨率渲染高精度3D图像,用于单分子定位和跟踪。对漂移进行自动校正并生成直观的绘图,同时保持高数据质量。

poYBAGJlDmiAVztjAAJAirmueiA067.png

图4:3DTRAX®是非常易于使用的斐济插件

使用适用于 Windows、MacOS 和 Linux 的库集成到您的工作流程或 OEM 仪器中,以 ThunderSTORM 或双螺旋文件格式保存图像并导出文件以供进一步分析,专有的反卷积算法可以在不损失精度的情况下重建全细胞图像。

pYYBAGJlDpeAX668AA_WDh-7__Q564.png

图5:从左到右:非洲绿猴肾细胞的细胞骨架,小鼠胚胎成纤维细胞中的微管,小鼠胚胎成纤维细胞细胞核中的复制DNA的3D超分辨图像

超分辨显微镜3D成像模块应用

超分辨显微成像和3D粒子跟踪技术为生物学和生物医学研究、药物发现、材料科学研究和工业检测打开了一个充满可能性的新世界。双螺旋工程技术具有高达传统显微镜30倍的成像深度,其为超分辨成像带来了最好的精度-深度平衡。在3D粒子追踪应用中,双螺旋工程带来的扩展的深度可以实现更长粒子轨迹的捕获。

在生命科学领域,双螺旋光工程正在引领从癌症和免疫学到传染病和神经科学的生命科学的突破。研究人员通过使用SPINDLE模块发现了新的细胞结构和亚细胞的相互作用。研究神经退行性疾病的科学家们能够看到以前从未见过的压力颗粒核3D图像。同样,研究免疫学的研究人员已经能够重建整个T细胞。

在药物开发领域,研究人员已经可以看到和跟踪药物化合物的真正工作原理,而不是简单地模拟新的化合物。双螺旋光工程实现了在成像和单粒子跟踪(SPT)领域的新突破,随着追踪分子的能力跨越更大的景深(高达20um),双螺旋可以记录比以往任何时候更长的轨迹,使得识别先导化合物和加快药物发现变得更加容易。

在材料科学领域,借助3D纳米成像和粒子跟踪技术,无论是金属、半导体、陶瓷、聚合物还是纳米材料研究,双螺旋技术都可以让您看到材料的结构、流动性等性能。精密成像与深度扩展相结合,让你对粒子动力学有了新的认识。有了更多的数据,就可以更好地预测材料在任何给定应用领域中的性能。

在工业检测领域,双螺旋工程可实现纳米尺度的三维检查。现在你可以在从微芯片到像素级的产品中发现微小的缺陷和其他功能缺陷。纳米级精度的检测,可以提高质量控制,节省时间,降低成本,提高产量和跟踪质量。

审核编辑:符乾江

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 显微镜
    +关注

    关注

    0

    文章

    568

    浏览量

    23076
  • 3D成像
    +关注

    关注

    0

    文章

    98

    浏览量

    16116
收藏 人收藏

    评论

    相关推荐

    VirtualLab Fusion应用:具有高数值孔径的反射显微镜系统

    摘要 在单分子显微成像应用中,定位精度是一个关键问题。由于某一方向上的定位精度与该方向上图像的点扩散函数(PSF)的宽度成正比,因此具有更高数值孔径(NA)的
    发表于 01-02 16:45

    压电纳米运动技术在“超级显微镜”中的应用

    压电纳米运动技术可以在纳米尺度下实现高精度的运动控制。在光学显微镜应用中,压电纳米运动器件可以进行样品控制、扫描、光束对准和自动聚焦等操作,大幅提高显微镜分辨率和
    的头像 发表于 01-02 10:06 100次阅读
    压电纳米运动技术在“超级<b class='flag-5'>显微镜</b>”中的应用

    季丰电子3D景深数字显微镜简介

    日前,季丰电子与上海交通大学合作开发的3D景深数字显微镜HY01正式通过了专家组验收。
    的头像 发表于 12-30 10:40 100次阅读

    傅里叶光场显微成像技术—2D显微镜实现3D成像

    的研究,即3D光场显微镜成像技术,随着国内外学者通过研究提出了各种光场显微镜的改进模型,将分辨率、放大倍数等重要参量进行了显著优化,大大扩展
    的头像 发表于 10-31 08:05 380次阅读
    傅里叶光场<b class='flag-5'>显微</b><b class='flag-5'>成像</b>技术—2<b class='flag-5'>D</b><b class='flag-5'>显微镜</b>实现<b class='flag-5'>3D</b><b class='flag-5'>成像</b>

    共聚焦激光显微镜对比分辨显微镜

    显微镜技术的发展极大地推动了科学研究的进步,尤其是在细胞生物学和纳米科学领域。共聚焦激光显微镜(CLSM)和分辨显微镜作为两种重要的
    的头像 发表于 10-30 09:42 576次阅读

    一种新颖的3D成像技术

    EventLFM 高速体积成像是研究动态生物过程不可或缺的工具。传统的基于扫描的3D成像技术,如共聚焦显微镜、双光子显微镜和光片
    的头像 发表于 09-06 06:19 216次阅读
    一种新颖的<b class='flag-5'>超</b>快<b class='flag-5'>3D</b><b class='flag-5'>成像</b>技术

    具有非常高数值孔径的反射显微镜系统

    摘要 在单分子显微镜成像应用中,定位精度是一个关键问题。由于在某一方向上的定位精度与图像在同一方向上的点扩散函数(point spread function, PSF)的宽度成正比,因
    发表于 08-14 11:52

    共聚焦显微镜有什么用?

    显微镜,以其卓越的性能和多功能性,为微纳米级测量提供了全面的解决方案。产品概述VT6000系列共聚焦显微镜基于共聚焦技术原理,结合精密Z向扫描模块3D建模算法,对
    的头像 发表于 06-24 09:58 729次阅读
    共聚焦<b class='flag-5'>显微镜</b>有什么用?

    共聚焦显微镜成像原理、功能、分辨率与优势解析

    在材料科学和精密工程领域,对微观结构的精确测量和分析至关重要。共聚焦显微镜作为一种高精度成像技术,为这些领域提供了强大的工具。共聚焦显微镜成像
    的头像 发表于 06-14 09:28 1599次阅读
    共聚焦<b class='flag-5'>显微镜</b>:<b class='flag-5'>成像</b>原理、功能、<b class='flag-5'>分辨</b>率与优势解析

    微观特征轮廓尺寸测量:光学3D轮廓仪、共焦显微镜与台阶仪的应用

    随着科技进步,显微测量仪器以满足日益增长的微观尺寸测量需求而不断发展进步。多种高精度测量仪器被用于微观尺寸的测量,其中包括光学3D表面轮廓仪(白光干涉仪)、共聚焦显微镜和台阶仪。有效评
    发表于 06-07 09:31 0次下载

    共聚焦、光学显微镜与测量显微镜的区分

    显微镜介绍共聚焦显微镜的工作原理基于“共聚焦”概念,即只有处于物镜焦平面上的点才能清晰成像,而焦平面以外点的成像则被排除掉。这是通过使用特殊的光学系统,如共聚焦孔径(
    发表于 05-14 10:43 3次下载

    显微成像与精密测量:共聚焦、光学显微镜与测量显微镜的区分

    共聚焦显微镜是一种光学显微镜,也可以被称为测量显微镜。能够进行二维和三维成像,是光学显微镜技术中较为先进的一种;因其
    的头像 发表于 05-11 11:38 914次阅读
    <b class='flag-5'>显微</b><b class='flag-5'>成像</b>与精密测量:共聚焦、光学<b class='flag-5'>显微镜</b>与测量<b class='flag-5'>显微镜</b>的区分

    浅谈分辨光学成像

    分辨光学定义及应用 分辨光学成像特指分辨率打破了光学显微镜分辨率极限(200nm)的
    的头像 发表于 03-15 06:35 605次阅读
    浅谈<b class='flag-5'>超</b><b class='flag-5'>分辨</b>光学<b class='flag-5'>成像</b>

    显微测量|共聚焦显微镜大倾角清纳米三维显微成像

    获取不同高度处清晰焦点并重建出3D真彩图像,从而进行分析。仪器结构共聚焦显微镜主要有四部分组成:1、显微镜光学系统。2、扫描装置。3、激光光源。4、检测系统。整套仪
    发表于 02-20 09:07 1次下载

    显微测量|共聚焦显微镜大倾角清纳米三维显微成像

    共聚焦显微镜在材料学领域应用广泛,通过超高分辨率的三维显微成像测量,可清晰观察材料的表面形貌、表层结构和纳米尺度的缺陷,有助于理解材料的微观特性和材料工程设计。
    的头像 发表于 02-18 10:53 549次阅读
    <b class='flag-5'>显微</b>测量|共聚焦<b class='flag-5'>显微镜</b>大倾角<b class='flag-5'>超</b>清纳米三维<b class='flag-5'>显微</b><b class='flag-5'>成像</b>