导读
在不同的任务上对比了UNet和UNet++以及使用不同的预训练编码器的效果。
介绍
语义分割是计算机视觉的一个问题,我们的任务是使用图像作为输入,为图像中的每个像素分配一个类。在语义分割的情况下,我们不关心是否有同一个类的多个实例(对象),我们只是用它们的类别来标记它们。有多种关于不同计算机视觉问题的介绍课程,但用一张图片可以总结不同的计算机视觉问题:
语义分割在生物医学图像分析中有着广泛的应用:x射线、MRI扫描、数字病理、显微镜、内窥镜等。https://grand-challenge.org/challenges上有许多不同的有趣和重要的问题有待探索。
从技术角度来看,如果我们考虑语义分割问题,对于N×M×3(假设我们有一个RGB图像)的图像,我们希望生成对应的映射N×M×k(其中k是类的数量)。有很多架构可以解决这个问题,但在这里我想谈谈两个特定的架构,Unet和Unet++。
有许多关于Unet的评论,它如何永远地改变了这个领域。它是一个统一的非常清晰的架构,由一个编码器和一个解码器组成,前者生成图像的表示,后者使用该表示来构建分割。每个空间分辨率的两个映射连接在一起(灰色箭头),因此可以将图像的两种不同表示组合在一起。并且它成功了!
接下来是使用一个训练好的编码器。考虑图像分类的问题,我们试图建立一个图像的特征表示,这样不同的类在该特征空间可以被分开。我们可以(几乎)使用任何CNN,并将其作为一个编码器,从编码器中获取特征,并将其提供给我们的解码器。据我所知,Iglovikov & Shvets 使用了VGG11和resnet34分别为Unet解码器以生成更好的特征和提高其性能。
Unet++是最近对Unet体系结构的改进,它有多个跳跃连接。
根据论文, Unet++的表现似乎优于原来的Unet。就像在Unet中一样,这里可以使用多个编码器(骨干)来为输入图像生成强特征。
我应该使用哪个编码器?
这里我想重点介绍Unet和Unet++,并比较它们使用不同的预训练编码器的性能。为此,我选择使用胸部x光数据集来分割肺部。这是一个二值分割,所以我们应该给每个像素分配一个类为“1”的概率,然后我们可以二值化来制作一个掩码。首先,让我们看看数据。
这些是非常大的图像,通常是2000×2000像素,有很大的mask,从视觉上看,找到肺不是问题。使用segmentation_models_pytorch库,我们为Unet和Unet++使用100+个不同的预训练编码器。我们做了一个快速的pipeline来训练模型,使用Catalyst (pytorch的另一个库,这可以帮助你训练模型,而不必编写很多无聊的代码)和Albumentations(帮助你应用不同的图像转换)。
- 定义数据集和增强。我们将调整图像大小为256×256,并对训练数据集应用一些大的增强。
importalbumentationsasA
fromtorch.utils.dataimportDataset,DataLoader
fromcollectionsimportOrderedDict
classChestXRayDataset(Dataset):
def__init__(
self,
images,
masks,
transforms):
self.images=images
self.masks=masks
self.transforms=transforms
def__len__(self):
return(len(self.images))
def__getitem__(self,idx):
"""Willloadthemask,getrandomcoordinatesaround/withthemask,
loadtheimagebycoordinates
"""
sample_image=imread(self.images[idx])
iflen(sample_image.shape)==3:
sample_image=sample_image[...,0]
sample_image=np.expand_dims(sample_image,2)/255
sample_mask=imread(self.masks[idx])/255
iflen(sample_mask.shape)==3:
sample_mask=sample_mask[...,0]
augmented=self.transforms(image=sample_image,mask=sample_mask)
sample_image=augmented['image']
sample_mask=augmented['mask']
sample_image=sample_image.transpose(2,0,1)#channelsfirst
sample_mask=np.expand_dims(sample_mask,0)
data={'features':torch.from_numpy(sample_image.copy()).float(),
'mask':torch.from_numpy(sample_mask.copy()).float()}
return(data)
defget_valid_transforms(crop_size=256):
returnA.Compose(
[
A.Resize(crop_size,crop_size),
],
p=1.0)
deflight_training_transforms(crop_size=256):
returnA.Compose([
A.RandomResizedCrop(height=crop_size,width=crop_size),
A.OneOf(
[
A.Transpose(),
A.VerticalFlip(),
A.HorizontalFlip(),
A.RandomRotate90(),
A.NoOp()
],p=1.0),
])
defmedium_training_transforms(crop_size=256):
returnA.Compose([
A.RandomResizedCrop(height=crop_size,width=crop_size),
A.OneOf(
[
A.Transpose(),
A.VerticalFlip(),
A.HorizontalFlip(),
A.RandomRotate90(),
A.NoOp()
],p=1.0),
A.OneOf(
[
A.CoarseDropout(max_holes=16,max_height=16,max_width=16),
A.NoOp()
],p=1.0),
])
defheavy_training_transforms(crop_size=256):
returnA.Compose([
A.RandomResizedCrop(height=crop_size,width=crop_size),
A.OneOf(
[
A.Transpose(),
A.VerticalFlip(),
A.HorizontalFlip(),
A.RandomRotate90(),
A.NoOp()
],p=1.0),
A.ShiftScaleRotate(p=0.75),
A.OneOf(
[
A.CoarseDropout(max_holes=16,max_height=16,max_width=16),
A.NoOp()
],p=1.0),
])
defget_training_trasnforms(transforms_type):
iftransforms_type=='light':
return(light_training_transforms())
eliftransforms_type=='medium':
return(medium_training_transforms())
eliftransforms_type=='heavy':
return(heavy_training_transforms())
else:
raiseNotImplementedError("Notimplementedtransformationconfiguration")
- 定义模型和损失函数。这里我们使用带有regnety_004编码器的Unet++,并使用RAdam + Lookahed优化器使用DICE + BCE损失之和进行训练。
importtorch
importsegmentation_models_pytorchassmp
importnumpyasnp
importmatplotlib.pyplotasplt
fromcatalystimportdl,metrics,core,contrib,utils
importtorch.nnasnn
fromskimage.ioimportimread
importos
fromsklearn.model_selectionimporttrain_test_split
fromcatalyst.dlimportCriterionCallback,MetricAggregationCallback
encoder='timm-regnety_004'
model=smp.UnetPlusPlus(encoder,classes=1,in_channels=1)
#model.cuda()
learning_rate=5e-3
encoder_learning_rate=5e-3/10
layerwise_params={"encoder*":dict(lr=encoder_learning_rate,weight_decay=0.00003)}
model_params=utils.process_model_params(model,layerwise_params=layerwise_params)
base_optimizer=contrib.nn.RAdam(model_params,lr=learning_rate,weight_decay=0.0003)
optimizer=contrib.nn.Lookahead(base_optimizer)
scheduler=torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,factor=0.25,patience=10)
criterion={
"dice":DiceLoss(mode='binary'),
"bce":nn.BCEWithLogitsLoss()
}
- 定义回调函数并训练!
callbacks=[
#Eachcriterioniscalculatedseparately.
CriterionCallback(
input_key="mask",
prefix="loss_dice",
criterion_key="dice"
),
CriterionCallback(
input_key="mask",
prefix="loss_bce",
criterion_key="bce"
),
#Andonlythenweaggregateeverythingintooneloss.
MetricAggregationCallback(
prefix="loss",
mode="weighted_sum",
metrics={
"loss_dice":1.0,
"loss_bce":0.8
},
),
#metrics
IoUMetricsCallback(
mode='binary',
input_key='mask',
)
]
runner=dl.SupervisedRunner(input_key="features",input_target_key="mask")
runner.train(
model=model,
criterion=criterion,
optimizer=optimizer,
scheduler=scheduler,
loaders=loaders,
callbacks=callbacks,
logdir='../logs/xray_test_log',
num_epochs=100,
main_metric="loss",
minimize_metric=True,
verbose=True,
)
如果我们用不同的编码器对Unet和Unet++进行验证,我们可以看到每个训练模型的验证质量,并总结如下:
我们注意到的第一件事是,在所有编码器中,Unet++的性能似乎都比Unet好。当然,有时这种差异并不是很大,我们不能说它们在统计上是否完全不同 —— 我们需要在多个folds上训练,看看分数分布,单点不能证明任何事情。第二,resnest200e显示了最高的质量,同时仍然有合理的参数数量。有趣的是,如果我们看看https://paperswithcode.com/task/semantic-segmentation,我们会发现resnest200在一些基准测试中也是SOTA。
好的,但是让我们用Unet++和Unet使用resnest200e编码器来比较不同的预测。
在某些个别情况下,Unet++实际上比Unet更糟糕。但总的来说似乎更好一些。
一般来说,对于分割网络来说,这个数据集看起来是一个容易的任务。让我们在一个更难的任务上测试Unet++。为此,我使用PanNuke数据集,这是一个带标注的组织学数据集(205,343个标记核,19种不同的组织类型,5个核类)。数据已经被分割成3个folds。
我们可以使用类似的代码在这个数据集上训练Unet++模型,如下所示:
我们在这里看到了相同的模式 - resnest200e编码器似乎比其他的性能更好。我们可以用两个不同的模型(最好的是resnest200e编码器,最差的是regnety_002)来可视化一些例子。
我们可以肯定地说,这个数据集是一项更难的任务 —— 不仅mask不够精确,而且个别的核被分配到错误的类别。然而,使用resnest200e编码器的Unet++仍然表现很好。
总结
这不是一个全面语义分割的指导,这更多的是一个想法,使用什么来获得一个坚实的基线。有很多模型、FPN,DeepLabV3, Linknet与Unet有很大的不同,有许多Unet-like架构,例如,使用双编码器的Unet,MAnet,PraNet,U²-net — 有很多的型号供你选择,其中一些可能在你的任务上表现的比较好,但是,一个坚实的基线可以帮助你从正确的方向上开始。
-
编码器
+关注
关注
45文章
3640浏览量
134451 -
医学影像
+关注
关注
1文章
111浏览量
17362
原文标题:UNet 和 UNet++:医学影像经典分割网络对比
文章出处:【微信号:CVSCHOOL,微信公众号:OpenCV学堂】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
评论