本文将讨论相移,即电路导致从输入到输出的电压或电流超前或滞后的影响。特别是,我们将关注无功负载和网络将如何影响电路的相移。
我们将专门研究相移如何影响原本完全可靠的运算放大器,以及如何在某些谐振网络拓扑中使用电抗元件来发挥我们的优势。
缓冲器上的容性负载
下面是一个充当简单缓冲器的运算放大器。
图 1. 使用 LF411 运算放大器的基本缓冲器或“电压跟随器”。
在相位开始下降之前,响应是均匀且平坦的,最高可达 1 MHz。
图 2. LF411 电压跟随器的输出响应。它在大约 4 MHz 处开始衰减信号。
该电路依赖负反馈(同相输出到反相输入),-180° 相移导致负反馈变为正反馈(180° 相移输出到反相输入)。
现在让我们尝试用电容器加载电路。
图 3. 使用缓冲器驱动非常大的容性负载。这不是一个好主意!
如果运算放大器具有电阻输出阻抗,对于该运算放大器(LF411)在单位增益下的输出阻抗约为 0.1 - 10 Ω,我们预计该电容器会导致截止频率以上 -90° 相移。让我们看看发生了什么。
图 4. 电容不良的证据:放大器开始振荡!
那看起来很糟糕。幅度响应有一个共振峰,相位迅速下降到 -180°,这是一个完美的振荡方法。必须至少有三个电容(电感不太可能)导致这些响应变化。有了我们的嫌疑人,我们可以遍历电路并找出导致问题的确切原因。
使用反应式网络实现相移
相移在反馈网络、谐振网络和振荡器等电路中变得尤为重要。我们可能希望在我们的电路中有一个 90° 的相移来有意地控制相位。很简单,我们可以添加一个电容器(或者对于冒险者,一个电感器)来分流输出,然后看看我们的位置。
事实上,我们可能不希望负载上只有90° 的相移。也许我们想要 180°。
也许我们只需要投入第二个电容器?
图 5. 创建 180° 相移的无辜尝试
这是行不通的——两个并联电容器只是形成一个等效电容器。它们都共享相同的电压,因此它们不能都贡献不同的滞后量。我们需要更有创造力。
实现这种效果的一种方法是使用多级 RC 滤波器。但更理想的方法可能是将电容器与一个或多个电抗元件分开,如下面的电路所示。
图 6. 解决问题,该电路在谐振时应具有 180° 相移。
该电路是一个低通滤波器,它将以与由 1 µF 电容器和 0.5 µH 电感器(或 0.5 µF 电容器和 1 µH 电感器)组成的谐振网络相同的频率谐振。
图 7. CLC 网络的波特图显示出良好的共振和快速的相位变化。
从响应和相移我们可以看出,电路的行为类似于 RC 滤波器,源电阻和两个电容并联,在谐振峰值前不久达到 -90°。然后出现谐振峰值,相位急剧下降到 -270°(三个电抗元件的最大相移)。恰好在谐振时,相移是所需的 180°。
该电路用作 Colpitts 振荡器中的谐振元件,而电感-电容-电感变体用于 Hartley 振荡器。通常,电路将如图 8 所示绘制。
图 8. CLC 电路的替代图,常见于 Colpitts 振荡器示意图中。
虽然它可能会稍微混淆元素的用途,但将元素绘制为图 8 会给出单个谐振元素的外观。您可以在图 9 中看到以这种方式绘制的谐振网络的 Colpitts 振荡器示例。
图 9. Colpitts 振荡器的典型图
最后两个例子引起了一些共鸣。因为谐振元件依赖于电抗元件提供相移的能力,所以多谈谈谐振电路中的相位会是说明性的。
模拟谐振槽
当电感器的电抗和电容器的电抗相等时,串联的 LC 电路会发生谐振。此时,电感和电容共享相同的电流;理想情况下,电感器提供 +90°(超前)电压相移,而电容器提供理想 -90°(滞后)电压相移,这意味着电路两端的电压异相 0°(无电压降,短路)。类似的效果会产生 LC 谐振回路。
但正如我们现在所知,当源阻抗或负载阻抗设置正确时,电容器和电感器只会提供 +/- 90° 的相移。以这个谐振槽为例。
图 10. 一个简单的谐振回路,由 1 Ω 输出阻抗供电。会响吗?
源阻抗仅为 1 Ω,负载为 10 kΩ。坦克应该以 5 kHz 共振。我们可以通过应用输入阶跃并寻找振铃来测试共振。模拟结果如下。
图 11. 油箱的响应过于阻尼,不允许出现任何振铃,这在许多情况下都是可取的。
坦克似乎没有太多的响声。原因在于源阻抗,考虑到我们的 L 和 C 值,它太低了。我们希望我们的电容器和电感器允许在谐振频率下快速来回交换能量,但这种效果会受到抑制,因为谐振回路 Q 因子太低。
有几种方法可以理解这一点。在相移的背景下,我们可能会提出以下解释。仅查看源阻抗和电容器,我们看到它们形成了一个截止频率为 160 kHz 的低通 RC 滤波器。相反,源阻抗和电感形成一个截止频率为 160 Hz 的 RL 高通滤波器。
如果我们同意谐振回路的行为取决于组件提供的相移(来自电容器的-90°电压相移,来自电感器的+90°电压相移),那么阻尼的原因就很明显了。
RC 低通滤波器将提供高于其截止频率的 -90° 相移,而 RL 高通滤波器将提供低于其截止频率的 +90° 相移。5 kHz 的谐振频率对于 RL 滤波器而言太高而无法提供正相移,而对于 RC 滤波器而言太低而无法提供负相移。
以这种方式推理,我们通过改变 L 和 C 的值(减少电感和增加同等量度的电容)或改变源阻抗来诱使电路产生振铃。
增加源阻抗具有预期的效果。
图 12. 源阻抗为 100 Ω 时,谐振频率为 5 kHz。
现在,如预期的那样,槽环以 0.2 ms 的周期(对应于 5 kHz 的谐振频率)响铃。
结论
本文仔细研究了模拟电路中的相移。我们的主题让我们了解了各种电路:放大器、滤波器、谐振回路和振荡器。电容器和电感器总是会引起相移,但其影响受源阻抗和负载阻抗的影响。在这里,我们主要假设源阻抗和负载阻抗是电阻性的。然而,反应元素总是存在的。
-
电路
+关注
关注
172文章
5837浏览量
171881 -
模拟电路
+关注
关注
125文章
1554浏览量
102672 -
相移
+关注
关注
0文章
8浏览量
9987
发布评论请先 登录
相关推荐
评论