0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

什么是BERT?为何选择BERT?

NVIDIA英伟达 来源:NVIDIA英伟达 作者:NVIDIA英伟达 2022-04-26 14:24 次阅读

BERT 是由 Google 开发的自然语言处理模型,可学习文本的双向表示,显著提升在情境中理解许多不同任务中的无标记文本的能力。

BERT 是整个类 BERT 模型(例如 RoBERTa、ALBERT 和 DistilBERT)系列的基础。

什么是 BERT?

基于 Transformer (变换器)的双向编码器表示 (BERT) 技术由 Google 开发,通过在所有层中共同调整左右情境,利用无标记文本预先训练深度双向表示。该技术于 2018 年以开源许可的形式发布。Google 称 BERT 为“第一个深度双向、无监督式语言表示,仅使用纯文本语料库预先进行了训练”(Devlin et al. 2018)。

双向模型在自然语言处理 (NLP) 领域早已有应用。这些模型涉及从左到右以及从右到左两种文本查看顺序。BERT 的创新之处在于借助 Transformer 学习双向表示,Transformer 是一种深度学习组件,不同于递归神经网络 (RNN) 对顺序的依赖性,它能够并行处理整个序列。因此可以分析规模更大的数据集,并加快模型训练速度。Transformer 能够使用注意力机制收集词语相关情境的信息,并以表示该情境的丰富向量进行编码,从而同时处理(而非单独处理)与句中所有其他词语相关的词语。该模型能够学习如何从句段中的每个其他词语衍生出给定词语的含义。

之前的词嵌入技术(如 GloVe 和 Word2vec)在没有情境的情况下运行,生成序列中各个词语的表示。例如,无论是指运动装备还是夜行动物,“bat”一词都会以同样的方式表示。ELMo 通过双向长短期记忆模型 (LSTM),对句中的每个词语引入了基于句中其他词语的深度情景化表示。但 ELMo 与 BERT 不同,它单独考虑从左到右和从右到左的路径,而不是将其视为整个情境的单一统一视图。

由于绝大多数 BERT 参数专门用于创建高质量情境化词嵌入,因此该框架非常适用于迁移学习。通过使用语言建模等自我监督任务(不需要人工标注的任务)训练 BERT,可以利用 WikiText 和 BookCorpus 等大型无标记数据集,这些数据集包含超过 33 亿个词语。要学习其他任务(如问答),可以使用适合相应任务的内容替换并微调最后一层。

下图中的箭头表示三个不同 NLP 模型中从一层到下一层的信息流。

a4d2ac5c-c3be-11ec-bce3-dac502259ad0.png

BERT 模型能够更精细地理解表达的细微差别。例如,处理序列“Bob 需要一些药。他的胃不舒服,可以给他拿一些抗酸药吗?” BERT 能更好地理解 “Bob”、“他的”和“他”都是指同一个人。以前,在“如何填写 Bob 的处方”这一查询中,模型可能无法理解第二句话引用的人是 Bob。应用 BERT 模型后,该模型能够理解所有这些关联点之间的关系。

双向训练很难实现,因为默认情况下,在前一个词语和下一个词语的基础上调节每个词都包括多层模型中预测的词语。BERT 的开发者通过遮蔽语料库中的预测词语和其他随机词语解决了这个问题。BERT 还使用一种简单的训练技术,尝试预测给定的两个句子 A 和 B:B 和 A 是先后还是随机关系。

为何选择 BERT?

自然语言处理是当今许多商业人工智能研究的中心。例如,除搜索引擎外,NLP 还用在了数字助手、自动电话响应和车辆导航领域。BERT 是一项颠覆性技术,它提供基于大型数据集训练的单一模型,而且已经证实该模型能够在各种 NLP 任务中取得突破性成果。

BERT 的开发者表示,模型应用范围很广(包括解答问题和语言推理),而且无需对任务所需的具体架构做出大量修改。BERT 不需要使用标记好的数据预先进行训练,因此可以使用任何纯文本进行学习。

主要优势(用例)

BERT 可以针对许多 NLP 任务进行微调。它是翻译、问答、情感分析和句子分类等语言理解任务的理想之选。

目标式搜索

虽然如今的搜索引擎能够非常出色地理解人们要寻找的内容(在人们使用正确查询格式的前提下),但仍可以通过很多方式改善搜索体验。对于语法能力差或不懂得搜索引擎提供商所用语言的人员而言,体验可能令人不快。搜索引擎还经常需要用户尝试同一查询的不同变体,才能查询到理想结果。

用户每天在 Google 上执行 35 亿次搜索,搜索体验改进后,一天就可以减少 10% 的搜索量,长期累积下来将大幅节省时间、带宽和服务器资源。从业务角度来看,它还使搜索提供商能够更好地了解用户行为,并投放更具针对性的广告。

通过帮助非技术用户更准确地检索信息,并减少因查询格式错误带来的错误,可以更好地理解自然语言,从而提高数据分析和商业智能工具的效果。

辅助性导航

在美国,超过八分之一的人有残疾,而且许多人在物理和网络空间中导航的能力受到了限制。对于必须使用语音来控制轮椅、与网站交互和操作周围设备的人员而言,自然语言处理是生活必需品。通过提高对语音命令的响应能力,BERT 等技术可以提高生活质量,甚至可以在需要快速响应环境的情况下提高人身安全。

BERT 的重要意义

机器学习研究人员

BERT 在自然语言处理方面引发的变革等同于计算机视觉领域的 AlexNet,在该领域具有显著的革命性意义。仅需替换网络的最后一层,便可针对一些新任务定制网络,这项功能意味着用户可轻松将其应用于任何感兴趣的研究领域。无论用户的目标是翻译、情感分析还是执行一些尚未提出的新任务,都可以快速配置网络以进行尝试。截至目前,有关该模型的引文超过 8000 篇,其衍生用例不断证明该模型在处理语言任务方面的先进水平。

软件开发者

由于针对大型数据集预先训练过的模型的广泛可用性,BERT 大大减少了先进模型在投入生产时受到的计算限制。此外,将 BERT 及其衍生项纳入知名库(如 Hugging Face)意味着,机器学习专家不需要启动和运行基础模型了。

BERT 在自然语言解读方面达到了新的里程碑,与其他模型相比展现了更强大的功能,能够理解更复杂的人类语音并能更精确地回答问题。

BERT 为何可在 GPU 上表现更突出

对话式 AI 是人类与智能机器和应用程序(从机器人和汽车到家庭助手和移动应用)互动的基础构建块。让计算机理解人类语言及所有细微差别,并做出适当的反应,这是 AI 研究人员长期以来的追求。但是,在采用加速计算的现代 AI 技术出现之前,构建具有真正自然语言处理 (NLP) 功能的系统是无法实现的。

BERT 在采用 NVIDIA GPU 的超级计算机上运行,以训练其庞大的神经网络并实现超高的 NLP 准确性,从而影响已知的人类语言理解领域。虽然目前有许多自然语言处理方法,但让 AI 具有类似人类的语言能力仍然是难以实现的目标。随着 BERT 等基于 Transformer 的大规模语言模型的出现,以及 GPU 成为这些先进模型的基础设施平台,我们看到困难的语言理解任务快速取得了进展。数十年来,这种 AI 一直备受期待。有了 BERT,这一刻终于到来了。

模型复杂性提升了 NLP 准确性,而规模更大的语言模型可显著提升问答、对话系统、总结和文章完结等自然语言处理 (NLP) 应用程序的技术水平。BERT-Base 使用 1.1 亿个参数创建而成,而扩展的 BERT-Large 模型涉及 3.4 亿个参数。训练高度并行化,因此可以有效利用 GPU 上的分布式处理。BERT 模型已证明能够有效扩展为 39 亿个参数的 Megatron-BERT 等大规模模型。

BERT 的复杂性以及训练大量数据集方面的需求对性能提出了很高的要求。这种组合需要可靠的计算平台来处理所有必要的计算,以实现快速执行并提高准确性。这些模型可以处理大量无标记数据集,因此成为了现代 NLP 的创新中心,另外在很多用例中,对于即将推出的采用对话式 AI 应用程序的智能助手而言,这些模型都是上佳之选。

NVIDIA 平台提供可编程性,可以加速各种不同的现代 AI,包括基于 Transformer 的模型。此外,数据中心扩展设计加上软件库,以及对先进 AI 框架的直接支持,为承担艰巨 NLP 任务的开发者提供无缝的端到端平台。

在使用 NVIDIA 的 DGX SuperPOD 系统(基于连接了 HDR InfiniBand 的大规模 DGX A100 GPU 服务器集群)进行的一项测试中,NVIDIA 使用 MLPerf Training v0.7 基准实现了 0.81 分钟的 BERT 训练时间,创造了记录。相比之下,Google 的 TPUv3 在同一测试中所用时间超过了 56 分钟。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 编码器
    +关注

    关注

    45

    文章

    3585

    浏览量

    134127
  • 数据中心
    +关注

    关注

    16

    文章

    4673

    浏览量

    71946
  • 自然语言处理

    关注

    1

    文章

    612

    浏览量

    13504

原文标题:NVIDIA 大讲堂 | 什么是 BERT ?

文章出处:【微信号:NVIDIA_China,微信公众号:NVIDIA英伟达】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    TAS5421的参考设计中,BOM表给出的470pF缓冲电容耐压值为何选择250V换成50V的耐压值可以吗?

    TAS5421的参考设计中,BOM表给出的470pF缓冲电容耐压值为何选择250V,换成50V的耐压值可以吗?
    发表于 10-12 08:53

    内置误码率测试仪(BERT)和采样示波器一体化测试仪器安立MP2110A

    BERTWave MP2110A是一款内置误码率测试仪(BERT)和采用示波器的一体化测量仪器,支持光模块的误码率(BERT)测量、眼图模式测试、眼图分析等评估操作
    的头像 发表于 09-23 14:34 254次阅读
    内置误码率测试仪(<b class='flag-5'>BERT</b>)和采样示波器一体化测试仪器安立MP2110A

    M8020A J-BERT 高性能比特误码率测试仪

    M8020A 比特误码率测试仪 J-BERT M8020A 高性能 BERT 产品综述 Keysight J-BERT M8020A 高性能比特误码率测试仪能够快速、准确地表征传输速率高达 16 或
    的头像 发表于 08-21 17:13 173次阅读

    AWG和BERT常见问题解答

    随着信号的速率越来越高,调制格式越来越复杂,对测试仪器的性能要求也越来越高。是德科技也一直在推出业界领先的高带宽、高采样率的AWG和高性能的BERT
    的头像 发表于 08-06 17:27 524次阅读

    llm模型有哪些格式

    : 基于Transformer的模型 Transformer是一种基于自注意力机制的模型,广泛应用于NLP领域。基于Transformer的LLM模型包括: a. BERT(Bidirectional Encoder
    的头像 发表于 07-09 09:59 544次阅读

    【大语言模型:原理与工程实践】大语言模型的基础技术

    模型架构奠定基础。然后,引介一些经典的预训练模型,如BERT、GPT等。最后,解读ChatGPT和LLaMA系列模型,帮助读者初步感知大语言模型。文本主要由词序列构成,词是自然语言处理的基本单元。文本
    发表于 05-05 12:17

    斯坦福继Flash Attention V1和V2又推出Flash Decoding

    斯坦福大学此前提出的FlashAttention算法,能够在BERT-large训练中节省15%,将GPT训练速度提高2/3。
    的头像 发表于 03-13 15:23 725次阅读

    适配器微调在推荐任务中的几个关键因素

    可迁移的推荐系统 (TransRec) 通常包含一个用户编码器和一个或多个基于模态的物品编码器,其中基于模态的物品编码器通常是经过预训练的 ViT, BERT, RoBERTA, 与 GPT 等模型,他们往往包含很大的参数量。
    的头像 发表于 03-04 09:50 547次阅读
    适配器微调在推荐任务中的几个关键因素

    谷歌模型训练软件有哪些功能和作用

    谷歌模型训练软件主要是指ELECTRA,这是一种新的预训练方法,源自谷歌AI。ELECTRA不仅拥有BERT的优势,而且在效率上更胜一筹。
    的头像 发表于 02-29 17:37 742次阅读

    谷歌大型模型终于开放源代码,迟到但重要的开源战略

    在人工智能领域,谷歌可以算是开源的鼻祖。今天几乎所有的大语言模型,都基于谷歌在 2017 年发布的 Transformer 论文;谷歌的发布的 BERT、T5,都是最早的一批开源 AI 模型。
    发表于 02-22 18:14 413次阅读
    谷歌大型模型终于开放源代码,迟到但重要的开源战略

    只修改一个关键参数,就会毁了整个百亿参数大模型?

    2022 年开始,我们发现 Multilingual BERT 是一个经过大规模跨语言训练验证的模型实例,其展示出了优异的跨语言迁移能力。具
    的头像 发表于 02-20 14:51 705次阅读
    只修改一个关键参数,就会毁了整个百亿参数大模型?

    模型与人类的注意力视角下参数规模扩大与指令微调对模型语言理解的作用

    近期的大语言模型(LLM)在自然语言理解和生成上展现出了接近人类的强大能力,远远优于先前的BERT等预训练模型(PLM)。
    的头像 发表于 01-04 14:06 425次阅读
    模型与人类的注意力视角下参数规模扩大与指令微调对模型语言理解的作用

    ChatGPT是一个好的因果推理器吗?

    因果推理能力对于许多自然语言处理(NLP)应用至关重要。最近的因果推理系统主要基于经过微调的预训练语言模型(PLMs),如BERT [1] 和RoBERTa [2]。
    的头像 发表于 01-03 09:55 808次阅读
    ChatGPT是一个好的因果推理器吗?

    大语言模型背后的Transformer,与CNN和RNN有何不同

    (Google)研究团队提出,主要用于处理自然语言。 2018年10月,Google发出一篇论文《BERT: Pre-training of Deep Bidirectional Transformers
    的头像 发表于 12-25 08:36 3795次阅读
    大语言模型背后的Transformer,与CNN和RNN有何不同

    深入理解BigBird的块稀疏高效实现方案

    使用 BigBird。但是,在更深入之前,一定记住 BigBird 注意力只是 BERT 完全注意力的一个近似,因此我们并不纠结于让它比 BERT 完全注意力 更好,而是致力于让它更有效率。
    的头像 发表于 11-29 11:02 526次阅读
    深入理解BigBird的块稀疏高效实现方案