0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何基于最新的BPF/XDP特性来应对这些挑战

Linux阅码场 来源:Linux阅码场 作者:Linux阅码场 2022-04-26 14:29 次阅读

标题可直译为《从 XDP 到 Socket 的(全路径)流量路由:XDP 不够,BPF 来凑》,因为 XDP 运行 在网卡上,而且在边界和流量入口,再往后的路径(尤其是到了内核协议栈)它就管不 到了,所以引入了其他一些 BPF 技术来“接力”这个路由过程。另外, 这里的“路由”并非狭义的路由器三层路由,而是泛指 L3-L7 流量转发。

翻译时加了一些链接和代码片段,以更方便理解。

1 引言1.1 前期工作1.2 Facebook 流量基础设施1.3 面临的挑战 2 选择后端主机:数据中心内流量的一致性与无状态路由(四层负载均衡)2.1 Katran (L4LB) 负载均衡机制2.2 一致性哈希的局限性2.2.1 容错性:后端故障对非相关连接的扰动2.2.2 TCP 长连接面临的问题2.2.3 QUIC 协议为什么不受影响 2.3 TCP 连接解决方案:利用 BPF 将 backend server 信息嵌入 TCP Header2.3.1 原理和流程2.3.2 开销2.3.3 实现细节2.3.4 效果2.3.5 限制2.4 小结3 选择 socket:服务的真正优雅发布(七层负载均衡)3.1 当前发布方式及存在的问题3.1.1 发布流程3.1.2 存在的问题3.2 不损失容量、快速且用户无感的发布3.2.1 早期方案:socket takeover (or zero downtime restart)3.2.2 其他方案调研:SOREUSEPORT3.2.3 思考3.3 新方案:bpfskreuseport3.3.1 方案设计3.3.2 好处3.3.3 发布过程中的流量切换详解3.3.4 新老方案效果对比3.3.5 小结4 讨论4.1 遇到的问题:CPU 毛刺(CPU spikes)甚至卡顿4.2 Listening socket hashtable4.3 bpfskselectreuseport vs bpfsk_lookup

1.引言

用户请求从公网到达 Facebook 的边界 L4LB 节点之后,往下会涉及到两个阶段(每个阶 段都包括了 L4/L7)的流量转发:

1.从 LB 节点负载均衡到特定主机2.主机内:将流量负载均衡到不同 socket

以上两个阶段都涉及到流量的一致性路由(consistent routing of packets)问题。本文介绍这一过程中面临的挑战,以及我们如何基于最新的 BPF/XDP 特性来应对这些挑战。

1.1 前期工作

几年前也是在 LPC 大会,我们分享了 Facebook 基于 XDP 开发的几种服务,例如

1.基于 XDP 的四层负载均衡器(L4LB) katran, 从 2017 年开始,每个进入 facebook.com 的包都是经过 XDP 处理的;

2.基于 XDP 的防火墙(挡在 katran 前面)。

92440d52-c3bd-11ec-bce3-dac502259ad0.jpg

Facebook 两代软件 L4LB 对比。左:第一代,基于 IPVS,L4LB 需独占节点;右:第二代,基于 XDP,不需独占节点,与业务后端混布。

1.2 Facebook 流量基础设施

从层次上来说,如下图所示,Facebook 的流量基础设施分为两层:

1.边界层(edge tiers),位于 PoP 点2.数据中心层,我们称为 Origin DC

9258e98e-c3bd-11ec-bce3-dac502259ad0.jpg

每层都有一套全功能 LB(L4+L7)

Edge PoP 和 Origin DC 之间的 LB 通常是长链接

从功能上来说,如下图所示:

92708166-c3bd-11ec-bce3-dac502259ad0.jpg

1.用户连接(user connections)在边界终结,2.Edge PoP LB 将 L7 流量路由到终端主机,3.Origin DC LB 再将 L7 流量路由到最终的应用,例如 HHVM 服务。

1.3 面临的挑战

总结一下前面的内容:公网流量到达边界节点后,接下来会涉及 两个阶段的流量负载均衡(每个阶段都是 L4+L7),

1.宏观层面:LB 节点 -> 后端主机2.微观层面(主机内):主机内核 -> 主机内的不同 socket

这两个阶段都涉及到流量的高效、一致性路由(consistent routing)问题。

本文介绍这一过程中面临的挑战,以及我们是如何基于最新的 BPF/XDP 特性 来解决这些挑战的。具体来说,我们用到了两种类型的 BPF 程序:

1.BPF TCP header options:解决主机外(宏观)负载均衡问题;2.BPFPROGTYPESKREUSEPORT (及相关 map 类型BPFMAPTYPEREUSEPORTSOCKARRAY):解决主机内(微观)负载均衡问题。

2.选择后端主机:数据中心内流量的一致性与无状态路由(四层负载均衡)

先看第一部分,从 LB 节点转发到 backend 机器时,如何来选择主机。这是四层负载均衡问题。

2.1 Katran (L4LB) 负载均衡机制

回到流量基础设施图,这里主要关注 Origin DC 内部 L4-L7 的负载均衡

928a6e14-c3bd-11ec-bce3-dac502259ad0.jpg

katran 是基于 XDP 实现的四层负载均衡器,它的内部机制:

实现了一个 Maglev Hash 变种,通过一致性哈希选择后端;

在一致性哈希之上,还维护了自己的一个本地缓存来跟踪连接。这个设计是为了在某些后端维护或故障时,避免其他后端的哈希发生变化,后面会详细讨论。

用伪代码来表示 Katran 选择后端主机的逻辑:


int pick_host(packet* pkt) { if (is_in_local_cache(pkt)) return local_cache[pkt] return consistent_hash(pkt) % server_ring}

这种机制非常有效,也非常高效(highly effective and efficient)。

2.2 一致性哈希的局限性

2.2.1 容错性:后端故障对非相关连接的扰动

一致性哈希的一个核心特性是具备对后端变化的容错性(resilience to backend changes)。当一部分后端发生故障时,其他后端的哈希表项不受影响(因此对应的连接及主机也不受影响)。Maglev 论文中已经给出了评估这种容错性的指标,如下图,

92a2999e-c3bd-11ec-bce3-dac502259ad0.jpg

Resilience of Maglev hashing to backend changes

Maglev: A fast and reliable software network load balancer. OSDI 2016

横轴表示 backend 挂掉的百分比

纵轴是哈希表项(entries)变化的百分比,对应受影响连接的百分比

Google 放这张图是想说明:一部分后端发生变化时,其他后端受影响的概率非常小;但从我们的角度来说,以上这张图说明:即使后端挂掉的比例非常小, 整个哈希表还是会受影响,并不是完全无感知 —— 这就会 导致一部分流量被错误路由(misrouting):

对于短连接来说,例如典型的 HTTP 应用,这个问题可能影响不大;

但对于 tcp 长连接,例如持续几个小时的视频流,这种扰动就不能忍了。

2.2.2 TCP 长连接面临的问题

首先要说明,高效 != 100% 有效。对于 TCP 长连接来说(例如视频),有两种场景会它们被 reset:


int pick_host(packet* pkt) { if (is_in_local_cache(pkt)) // 场景一:ECMP shuffle 时(例如 LB 节点维护或故障),这里会 miss return local_cache[pkt] return consistent_hash(pkt) % server_ring // 场景二:后端维护或故障时,这里的好像有(较小)概率发生变化}

解释一下:

1.如果 LB 升级、维护或发生故障,会导致路由器 ECMP shuffle,那原来路由到某个 LB 节点的 flow,可能会被重新路由到另一台 LB 上;虽然我们维护了 cache,但它是 LB node local 的,因此会发生 cache miss;

2.如果后端节点升级、维护或发生故障,那么根据前面 maglev 容错性的实验结果,会有一 部分(虽然比例不是很大)的 flow 受到影响,导致路由错误。

以上分析可以看出,“持续发布” L4 和 L7 服务会导致连接不稳定,降低整体可靠性。除了发布之外,我们随时都有大量服务器要维护,因此哈希 ring 发生变化(一致性哈希 发生扰动)是日常而非例外。任何时候发生 ECMP shuffle 和服务发布/主机维护,都会导 致一部分 active 连接受损,虽然量很小,但会降低整体的可靠性指标。

解决这个问题的一种方式是在所有 LB 节点间共享这个 local cache (类似于 L4LB 中的 session replication),但这是个很糟糕的主意 ,因为这就需要去解决另外一大堆分布式系统相关的问题,尤其我们不希望引入任何 会降低这个极快数据路径性能的东西。

2.2.3 QUIC 协议为什么不受影响

但对于 QUIC 来说,这都不是问题。

connection_id

QUIC 规范(RFC 9000)中允许 server 将任意信息嵌入到包的 connectionid 字段。

Facebook 已经广泛使用 QUIC 协议,因此在 Facebook 内部,我们可以

1.在 server 端将路由信息(routing information)嵌入到 connection_id 字段

2.要求客户端必须将这个信息带回来。

完全无状态四层路由这样整条链路上都可以从包中提取这个 id,无需任何哈希或 cache 查找,最终实现的是一个 完全无状态的四层路由(completely stateless routing in L4)。

那能不能为 TCP 做类似的事情呢?答案是可以。这就要用到 BPF-TCP header option 了。

2.3 TCP 连接解决方案:利用 BPF 将 backend server 信息嵌入 TCP Header

2.3.1 原理和流程

基本思想:

1.编写一段 BPFPROGTYPESOCKOPS 类型的 BPF 程序,attach 到 cgroup:在 LISTEN, CONNECT, CONNESTD 等事件时会触发 BPF 程序的执行BPF 程序可以获取包的 TCP Header,然后往其中写入路由信息(这里是 serverid),或者从中读取路由信息2.在 L4LB 侧维护一个 server_id 缓存,记录仍然存活的 backend 主机

以下图为例,我们来看下 LB 节点和 backend 故障时,其他 backend 上的原有连接如何做到不受影响:

92b76b12-c3bd-11ec-bce3-dac502259ad0.jpg

1) 客户端发起一个 SYN;

2) L4LB 第一次见这条 flow,因此通过一致性哈希为它选择一台 backend 主机,然后将包转发过去;

3) 服务端应答 SYN+ACK,其中 服务端 BPF 程序将 server_id 嵌入到 TCP 头中;

图中这台主机获取到自己的 serverid 是 42,然后将这个值写到 TCP header;

客户端主机收到包后,会解析这个 id 并存下来,后面发包时都会带上这个 serverid;

假设过了一会发生故障,前面那台 L4LB 挂了(这会导致 ECMP 发生变化);另外,某些 backend hosts 也挂了(这会 影响一致性哈希,原有连接接下来有小概率会受到影响),那么接下来

4) 客户端流量将被(数据中心基础设施)转发到另一台 L4LB;

5) 这台新的 L4LB 解析客户端包的 TCP header,提取 serverid,查询 serverid 缓存( 注意不是 Katran 的 node-local 连接缓存)之后发现 这台机器还是 active 的,因此直接转发给这台机器。

可以看到在 TCP Header 中引入了路由信息后,未发生故障的主机上的长连接就能够避免 因 L4LB 和主机挂掉而导致的 misrouting(会被直接 reset)。

2.3.2 开销

数据开销:TCP header 增加 6 个字节


struct tcp_opt { uint8_t kind; uint8_t len; uint32_t server_id;}; // 6-bytes total

运行时开销:不明显需要在 L4LB 中解析 TCP header 中的 serverid 字段,理论上来说,这个开销跟代码实 现的好坏相关。我们测量了自己的实现,这个开销非常不明显。

2.3.3 实现细节

监听的 socket 事件


switch (skops->op) { case BPF_SOCK_OPS_TCP_LISTEN_CB: case BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB: case BPF_SOCK_OPS_TCP_CONNECT_CB: case BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB: case BPF_SOCK_OPS_PARSE_HDR_OPT_CB: case BPF_SOCK_OPS_HDR_OPT_LEN_CB: case BPF_SOCK_OPS_WRITE_HDR_OPT_CB: . . .}

维护 TCP flow -> serverid 的映射在每个 LB 节点上用 bpfskstorage 来存储 per-flow serverid。也就是说,

1.对于建连包特殊处理,2.建连之后会维护有 flow 信息(例如连接跟踪),3.对于建连成功后的普通流量,从 flow 信息就能直接映射到 serverid, 不需要针对每个包去解析 TCP header。

serverid 的分配和同步前面还没有提到如何分配 server_id,以及如何保证这些后端信息在负 载均衡器侧的时效性和有效性。

我们有一个 offline 工作流,会给那些有业务在运行的主机随机分配 一个 id,然后将这个信息同步给 L4 和 L7 负载均衡器(Katran and Proxygen), 后者拿到这些信息后会将其加载到自己的控制平面。因此这个系统不会有额外开销,只要 保证 LB 的元信息同步就行了。

由于这个机制同时适用于 QUIC 和 TCP,因此 pipeline 是同一个。

2.3.4 效果

下面是一次发布,可以看到发布期间 connection reset 并没有明显的升高:

92d12d36-c3bd-11ec-bce3-dac502259ad0.jpg

2.3.5 限制

这种方式要求 TCP 客户端和服务端都在自己的控制之内,因此

对典型的数据中心内部访问比较有用;

要用于数据中心外的 TCP 客户端,就要让后者将带给它们的 server_id 再带回来,但这个基本做不到;

即使它们带上了,网络中间处理节点(middleboxes)和防火墙(firewalls)也可能会将这些信息丢弃。

2.4 小结

通过将 server_id 嵌入 TCP 头中,我们实现了一种 stateless routing 机制,

这是一个完全无状态的方案

额外开销(CPU / memory)非常小,基本感知不到

其他竞品方案都非常复杂,例如在 hosts 之间共享状态,或者将 server_id 嵌入到 ECR (Echo Reply) 时间戳字段。

3.选择socket:服务的真正优雅发布(七层负载均衡)

前面介绍了流量如何从公网经过内网 LB 到达 backend 主机。再来看在主机内,如何路由流量来保证七层服务(L7 service)发布或重启时不损失任何流量。

这部分内容在 SIGCOMM 2020 论文中有详细介绍。想了解细节的可参考:

Facebook, Zero Downtime Release: Disruption-free Load Balancing of a Multi-Billion User Website. SIGCOMM 2020

3.1 当前发布方式及存在的问题

L7LB Proxygen 自身也是一个七层服务,我们以它的升级为例来看一下当前发布流程。

3.1.1 发布流程

1.发布前状态:Proxygen 实例上有一些老连接,也在不断接受新连接

92e2901c-c3bd-11ec-bce3-dac502259ad0.jpg

2.拉出:拉出之后的实例不再接受新连接,但在一定时间窗口内,继续为老连接提供服务;

这个窗口称为 graceful shutdown(也叫 draining) period,例如设置为 5 或 10 分钟;

拉出一般是通过将 downstream service 的健康监测置为 false 来实现的,例如在这个例子中,就是让 Proxygen 返回给 katran 的健康监测是失败的。

92f77130-c3bd-11ec-bce3-dac502259ad0.jpg

3.发布新代码:graceful 窗口段过了之后,不管它上面还有没有老连接,直接开始升级。

部署新代码

关闭现有进程,创建一个新进程运行新代码。

930b9bc4-c3bd-11ec-bce3-dac502259ad0.jpg

一般来说,只要 graceful 时间段设置比较合适,一部分甚至全部老连接能够在这个 窗口内正常退出,从而不会引起用户可见的 spike;但另一方面,如果此时仍然有老 连接,那这些客户端就会收到 tcp reset。

4.监听并接受新连接:升级之后的 Proxygen 开始正常工作, 最终达到和升级之前同等水平的一个连接状态。

93271d54-c3bd-11ec-bce3-dac502259ad0.jpg

3.1.2 存在的问题

很多公司都是用的以上那种发布方式,它的实现成本比较低,但也存在几个问题:

1.发布过程中,系统容量会降低。

从 graceful shutdown 开始,到新代码已经接入了正常量级的流量,这段时间内 系统容量并没有达到系统资源所能支撑的最大值, 例如三个 backend 本来最大能支撑 3N 个连接,那在升级其中一台的时间段内,系统能支撑的最大连接数就会小于 3N,在 2N~3N 之间。这也是为什么很多公司都避免在业务高峰(而是选择类似周日凌晨五点这样的时间点)做这种变更的原因之一。

2.发布周期太长

假设有 100 台机器,分成 100 个批次(phase),每次发布一台, 如果 graceful time 是 10 分钟,一次发布就需要 1000 分钟,显然是不可接受的。

本质上来说,这种方式扩展性太差,主机或实例数量一多效率就非常低了。

3.2 不损失容量、快速且用户无感的发布

以上分析引出的核心问题是:如何在用户无感知的前提下,不损失容量(without losing capacity)且非常快速(very high velocity)地完成发布。

3.2.1 早期方案:socket takeover (or zero downtime restart)

我们在早期自己实现了一个所谓的 zero downtime restart 或称 socket takeover 方案。具体细节见前面提到的 LPC 论文,这里只描述下大概原理:相比于等待老进程的连接完全退出再开始发布,我们的做法是直接创建一个新进程,然后通过一个唯 一的 local socket 将老进程中 TCP listen socket 和 UDP sockets 的文件描述符 (以及 SCM rights)转移到新进程。

发布流程如下图所示,发布前,实例正常运行,同时提供 TCP 和 UDP 服务,其中,

TCP socket 分为两部分:已接受的连接(编号 1~N)和监听新连接的 listening socket

UDP socket,bind 在 VIP 上

933e37aa-c3bd-11ec-bce3-dac502259ad0.png

接下来开始发布:

1.创建一个新实例2.将 TCP listening socket 和 UDP VIP 迁移到新实例;老实例仍然 serving 现有 TCP 连接(1 ~ N),3.新实例开始接受新连接(N+1 ~ +∞),包括新的 TCP 连接和新的 UDP 连接4.老实例等待 drain

可以看到,这种方式:

1.在发布期间不会导致系统容器降低,因为我们完全保留了老实例,另外创建了一个新实例2.发布速度可以显著加快,因为此时可以并发发布多个实例3.老连接被 reset 的概率可以大大降低,只要允许老实例有足够的 drain 窗口

那么,这种方式有什么缺点吗?

存在的问题一个显而易见的缺点是:这种发布方式需要更多的系统资源,因为对于每个要升级的实例 ,它的新老实例需要并行运行一段时间;而在之前发布模型是干掉老实例再创建新实例, 不会同时运行。

但我们今天要讨论的是另一个问题:UDP 流量的分发或称解复用(de-multiplex)。

TCP 的状态维护在内核。

UDP 协议 —— 尤其是维护连接状态的 UDP 协议,具体来说就是 QUIC —— 所有 状态维护在应用层而非内核,因此内核完全没有 QUIC 的上下文。

由于 socket 迁移是在内核做的,而内核没有 QUIC 上下文(在应用层维护),因此 当新老进程同时运行时,内核无法知道对于一个现有 UDP 连接的包,应该送给哪个进程 (因为对于 QUIC 没有 listening socket 或 accepted socket 的概念),因此有些包会到老进程,有些到新进程,如下图左边所示;

935cb964-c3bd-11ec-bce3-dac502259ad0.png

为解决这个问题,我们引入了用户空间解决方案。例如在 QUIC 场景下,会查看 ConnectionID 等 QUIC 规范中允许携带的元信息,然后根据这些信息,通过另一个 local socket 转发给相应的老进程,如以上右图所示。

虽然能解决 QUIC 的问题,但可以看出,这种方式非常复杂和脆弱,涉及到大量进程间通信,需要维护许多状态。有没有简单的方式呢?

3.2.2 其他方案调研:SO_REUSEPORT

Socket takeover 方案复杂性和脆弱性的根源在于:为了做到客户端无感,我们在两个进程间共享了同一个 socket。因此要解决这个问题,就要避免在多个进程之间共享 socket。

这自然使我们想到了 SO_REUSEPORT: 它允许 多个 socket bind 到同一个 port。但这里仍然有一个问题:UDP 包的路由过程是非一致的(no consistent routing for UDP packets),如下图所示:

93725b2a-c3bd-11ec-bce3-dac502259ad0.jpg

如果新老实例的 UDP socket bind 到相同端口,那一个实例重启时,哈希结果就会发生变化,导致这个端口上的包发生 misrouting。

另一方面,SO_REUSEPORT 还有性能问题,

TCP 是有一个独立线程负责接受连接,然后将新连接的文件描述符转给其他线程 ,这种机制在负载均衡器中非常典型,可以认为是在 socket 层做分发;

UDP 状态在应用层,因此内核只能在 packet 层做分发, 负责监听 UDP 新连接的单个线性不但要处理新连接,还负责包的分发,显然会存在瓶颈和扩展性问题。

93863352-c3bd-11ec-bce3-dac502259ad0.jpg

因此直接使用 SO_REUSEPORT 是不行的。

3.2.3 思考

我们后退一步,重新思考一下我们的核心需求是什么。有两点:

1.在内核中实现流量的无损切换,以便客户端完全无感知;

2.过程能做到快速和可扩展,不存在明显性能瓶颈;

内核提供了很多功能,但并没有哪个功能是为专门这个场景设计的。因此要彻底解决问题,我们必须引入某种创新。

理论上:只要我们能控制主机内包的路由过程(routing of the packets within a host),那以上需求就很容易满足了。

实现上:仍然基于 SOREUSEPORT 思想,但同时解决 UDP 的一致性路由和瓶颈问题。最终我们引入了一个 socket 层负载均衡器 bpfsk_reuseport。

3.3 新方案:bpfskreuseport

3.3.1 方案设计

简单来说,

1.在 socket 层 attach 一段 BPF 程序,控制 TCP/UDP 流量的转发(负载均衡):2.通过一个 BPF map 维护配置信息,业务进程 ready 之后自己配置流量切换。

3.3.2 好处

这种设计的好处:

1.通用,能处理多种类型的协议。

2.在 VIP 层面,能更好地控制新进程(新实例)启动后的流量接入过程,例如

Proxygen 在启动时经常要做一些初始化操作,启动后做一些健康检测工作, 因此在真正开始干活之前还有一段并未 ready 接收请求/流量的窗口 —— 即使它此时已经 bind 到端口了。

在新方案中,我们无需关心这些,应用层自己会判断新进程什么时候可以接受流量 并通知 BPF 程序做流量切换;

3.性能方面,也解决了前面提到的 UDP 单线程瓶颈;

4.在包的路由(packet-level routing)方面,还支持根据 CPU 调整路由权重(adjust weight of traffic per-cpu)。例如在多租户环境中,CPU 的利用率可能并不均匀,可以根据自己的需要实现特定算法来调度,例如选择空闲的 CPU。

5.最后,未来迭代非常灵活,能支持多种新场景的实验,例如让每个收到包从 CPU 负责处理该包,或者 NUMA 相关的调度。

3.3.3 发布过程中的流量切换详解

用一个 BPFMAPTYPEREUSEPORTSOCKARRAY 类型的 BPF map 来配置转发规则,其中,

key::

value:socket 的文件描述符,与业务进程一一对应

如下图所示,即使新进程已经起来,但只要还没 ready(BPF map 中仍然指向老进程)

939d5582-c3bd-11ec-bce3-dac502259ad0.jpg

BPF 就继续将所有流量转给老进程

93ba0a06-c3bd-11ec-bce3-dac502259ad0.jpg

新进程 ready 后,更新 BPF map,告诉 BPF 程序它可以接收流量了

93cf5762-c3bd-11ec-bce3-dac502259ad0.jpg

BPF 程序就开始将流量转发给新进程了

93e7570e-c3bd-11ec-bce3-dac502259ad0.jpg

前面没提的一点是:我们仍然希望将 UDP 包转发到老进程上,这里实现起来其实就非常简单了: 1.已经维护了 flow -> socket 映射2.如果 flow 存在,就就转发到对应的 socket;不存在在创建一个新映射,转发给新实例的 socket。 这也解决了扩展性问题,现在可以并发接收包(one-thread-per-socket),不用担心新进程启动时的 disruptions 或 misrouting 了:

93f943ba-c3bd-11ec-bce3-dac502259ad0.jpg

3.3.4 新老方案效果对比 先来看发布过程对业务流量的扰动程度。下图是我们的生产数据中心某次发布的统计,图中有两条线: 1.一条是已发布的 server 百分比2.另一个条是同一时间的丢包数量

940db9d0-c3bd-11ec-bce3-dac502259ad0.jpg

可以看到在整个升级期间,丢包数量没有明显变化。 再来看流量分发性能,分别对 socket takeover 和 bpfskreuseport 两种方式加压:

942cad22-c3bd-11ec-bce3-dac502259ad0.jpg

1.控制组/对照组(左边):3x 流量时开始丢包,2.实验组(右边):30x,因此还没有到分发瓶颈但 CPU 已经用满了,但即使这样丢包仍然很少。 3.3.5 小结 本节介绍了我们的基于 BPFPROGTYPESKREUSEPORT 和 BPFMAPTYPEREUSEPORTSOCKARRAY 实现的新一代发布技术,它能实现主机内新老实例流量的无损切换,优点: 1.简化了运维流程,去掉脆弱和复杂的进程间通信(IPC),减少了故障; 2.效率大幅提升,例如 UDP 性能 10x; 3.可靠性提升,例如避免了 UDP misrouting 问题和 TCP 三次握手时的竞争问题。

4.讨论

4.1 遇到的问题:CPU 毛刺(CPU spikes)甚至卡顿 生产环境遇到过一个严重问题:新老进程同时运行期间,观察到 CPU spike 甚至 host locking;但测试环境从来没出现过,而且在实现上我们也没有特别消耗 CPU 的逻辑。 排查之后发现,这个问题跟 BPF 程序没关系,直接原因是 1.在同一个 netns 内有大量 socket,2.新老实例同时以支持和不支持 bpfskreuseport 的方式 bind 到了同一端口

 bind("[::1]:443"); /* without SO_REUSEPORT. Succeed. */ bind("[::2]:443"); /* with    SO_REUSEPORT. Succeed. */ bind("[::]:443");  /* with    SO_REUSEPORT. Still Succeed */
3.bind() 实现中有一个 spinlock 会遍历一个 hashtable bucket,这个哈希表只用 dstport 作为 key 去哈希, 如果有大量 http endpoints,由于它们的 dst_port 很可能都是 443 和 80, 因此会导致对应哈希槽上的链表特别长,在遍历时就会导致 CPU 毛刺甚至机器卡住。这一问题下一小节专门介绍。 这个问题花了很长时间排查,因此有人在类型场景下遇到类似问题,很可能跟这个有关。相关内核代码, 修复见 patch。 4.2 Listening socket hashtable 进一步解释上一小节提到的 hashtable 导致的 CPU 毛刺甚至卡顿问题以及 Facebook 的改进。这个问题在 Cloudflare 2016 年的分享 The revenge of the listening sockets 中有详细介绍。
// include/net/inet_hashtables.h


static inline struct sock *__inet_lookup(struct net *net,                     

struct inet_hashinfo *hashinfo,                     

struct sk_buff *skb, int doff,                     

const __be32 saddr, const __be16 sport,                     

const __be32 daddr, const __be16 dport,                     

const int dif, const int sdif,                     

bool *refcounted){   

 u16 hnum = ntohs(dport);    

struct sock *sk;

    // 查找是否有 ESTABLISHED 状态的连接    

sk = __inet_lookup_established(net, hashinfo, saddr, sport, daddr, hnum, dif, sdif);    

if (sk)        

return sk;


    // 查找是否有 LISTENING 状态的连接    

return __inet_lookup_listener(net, hashinfo, skb, doff, saddr, sport, daddr, hnum, dif, sdif);}
如以上代码所示,查找一个包对应的 socket 时, 1.首先会查找是否有 ESTABLISHED 状态的 socket,如果没有2.再确认是否有 LISTENING 状态的 socket;这一步会查一下 listen hashtable,

它的 bucket 数量非常小,内核宏定义为 32,此外,

这个哈希表 只根据目的端口(dstport)来做哈希,因此 IP 不同但 dstport 相同的 socket 都会哈希到同一个 bucket (在 Cloudflare 的场景中,有 16K entry 会命中同一个 bucket,形成一个非常长的链表)。

_inetlookup_listener() 老代码就不看了,直接看 5.10 的新代码,这已经包含了 Facebook 的 BPF 功能:

// net/ipv4/inet_hashtables.c

struct sock *__inet_lookup_listener(struct net *net,                    

struct inet_hashinfo *hashinfo,                    

struct sk_buff *skb, int doff,                    

const __be32 saddr, __be16 sport,                    

const __be32 daddr, const unsigned short hnum,                    

const int dif, const int sdif){    

struct inet_listen_hashbucket *ilb2;    

struct sock *result = NULL;    

unsigned int hash2;

    // 如果这里 attach 了 BPF 程序,直接让 BPF 程序来选择 socket    

/* Lookup redirect from BPF */    

if (static_branch_unlikely(&bpf_sk_lookup_enabled)) {        

result = inet_lookup_run_bpf(net, hashinfo, skb, doff, saddr, sport, daddr, hnum);        

if (result)            

goto done;    

}
    // 没有 attach BPF 程序或 BPF 程序没找到 socket:fallback 到常规的内核查找 socket 逻辑


    hash2 = ipv4_portaddr_hash(net, daddr, hnum);    

ilb2 = inet_lhash2_bucket(hashinfo, hash2);


    result = inet_lhash2_lookup(net, ilb2, skb, doff, saddr, sport, daddr, hnum, dif, sdif);    

if (result)        

goto done;


    /* Lookup lhash2 with INADDR_ANY */    

hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);    

ilb2 = inet_lhash2_bucket(hashinfo, hash2);


    result = inet_lhash2_lookup(net, ilb2, skb, doff, saddr, sport, htonl(INADDR_ANY), hnum, dif, sdif);done:    

if (IS_ERR(result))        

return NULL;    

return result;}
4.3 bpfskselectreuseport vs bpfsklookup 这种两种类型的 BPF 程序,分别是 Facebook 和 Cloudflare (根据各自需求)引入内核的, 功能有些相似,因此拿来对比一下。 先看一段 Cloudflare 引入 bpfsklookup 时的 commit message
This series proposes a new BPF program type named BPF_PROG_TYPE_SK_LOOKUP,or BPF sk_lookup for short.


BPF sk_lookup program runs when transport layer is looking up a listeningsocket for a new connection request (TCP), or when looking up anunconnected socket for a packet (UDP).


This serves as a mechanism to overcome the limits of what bind() API allowsto express. Two use-cases driving this work are:


(1) steer packets destined to an IP range, fixed port to a single socket


192.0.2.0/24, port 80 -> NGINX socket


(2) steer packets destined to an IP address, any port to a single socket


198.51.100.1, any port -> L7 proxy socket
更多信息,可参考他们的论文: The ties that un-bind: decoupling IP from web services and sockets for robust addressing agility at CDN-scale, SIGCOMM 2021 可以看到,它也允许多个 socket bind 到同一个 port,因此与 bpfskselect_reuseport 功能有些重叠,因为二者都源于这样一种限制:在收包时,缺少从应用层直接命令内核选择哪个 socket 的控制能力。 但二者也是有区别的:

skselectreuseport 与 IP 地址所属的 socket family 是紧耦合

sk_lookup 则将 IP 与 socket 解耦 —— lets it pick any / netns

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 数据中心
    +关注

    关注

    16

    文章

    4778

    浏览量

    72123
  • Facebook
    +关注

    关注

    3

    文章

    1429

    浏览量

    54753

原文标题:[译] Facebook 流量路由最佳实践:从公网入口到内网业务的全路径 XDP/BPF 基础设施

文章出处:【微信号:LinuxDev,微信公众号:Linux阅码场】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    JDSU Xgig1000 12G SAS/SATA 分析仪应对高速串行总线挑战的理想平台

    Xgig SAS/SATA分析仪是一款非常重要的工具设备,它拥有先进的性能和专家分析功能,使其成为应对高速串行总线挑战的理想平台
    的头像 发表于 11-22 11:10 147次阅读
    JDSU Xgig1000 12G SAS/SATA 分析仪<b class='flag-5'>应对</b>高速串行总线<b class='flag-5'>挑战</b>的理想平台

    如何应对V2X频谱挑战

    正如本系列前文所述,我们可以采用多种无线技术,以实现车对万物(V2X)和自动驾驶汽车。这些标准为汽车安全性能的提升提供了巨大潜力,但也带来了一些共存挑战,如果不加以解决,可能会对车辆运行产生不利影响。
    的头像 发表于 11-15 15:49 231次阅读

    PLM制造业解决方案:应对挑战,提升效率与竞争力

    在当今竞争激烈的制造业环境中,企业面临着多重挑战,包括信息不对称、成本控制困难、创新能力不足、供应链管理薄弱等问题。为了应对这些挑战,制造业企业纷纷寻求有效的解决方案。PLM(产品生命
    的头像 发表于 10-25 14:50 384次阅读
    PLM制造业解决方案:<b class='flag-5'>应对</b><b class='flag-5'>挑战</b>,提升效率与竞争力

    海外HTTP安全挑战应对策略

    海外HTTP安全挑战应对策略是确保跨国网络通信稳定、安全的关键。
    的头像 发表于 10-18 07:33 244次阅读

    施耐德电气全方位配电服务解决方案助力轻松应对各种挑战

    当上述问题出现时,你是否还在苦思解决之法?2024施耐德电气配电服务持续升级中!全能施管家出手,助力轻松应对各种挑战
    的头像 发表于 08-30 14:25 426次阅读

    如何使用MCF831x解决散热和快速启动挑战

    电子发烧友网站提供《如何使用MCF831x解决散热和快速启动挑战.pdf》资料免费下载
    发表于 08-30 09:21 0次下载
    如何使用MCF831x<b class='flag-5'>来</b>解决散热和快速启动<b class='flag-5'>挑战</b>

    使用SiC技术应对能源基础设施的挑战

    本文简要回顾了与经典的硅 (Si) 方案相比,SiC技术是如何提高效率和可靠性并降低成本的。然后在介绍 onsemi 的几个实际案例之前,先探讨了 SiC 的封装和系统集成选项,并展示了设计人员该如何最好地应用它们优化 SiC 功率 MOSFET 和栅极驱动器性能,以应对
    的头像 发表于 07-25 09:36 368次阅读
    使用SiC技术<b class='flag-5'>应对</b>能源基础设施的<b class='flag-5'>挑战</b>

    无人驾驶汽车需谨慎应对及存在的风险挑战

    ,自动驾驶领域正稳步前行。然而,笔者认为,我国无人驾驶汽车产业当前的核心任务仍应聚焦于技术创新与加速技术成熟,同时需谨慎应对测试与应用阶段潜在的风险挑战
    的头像 发表于 07-13 16:51 2495次阅读

    HMI触摸感应的设计挑战,触控技术如何应对

    都是可以用来实现触摸感应的技术手段,像电感器件可以利用线圈自感或互感系数的变化代替很多机械按钮应用。电容技术应用得更广泛,已经成为绝大部分设计中的首选。   尺寸与功耗的挑战   虽然电容感应的原理一点也不复杂,但是电容式触控
    的头像 发表于 06-05 00:11 2895次阅读

    自动化生产助力温达电子应对原材料涨价挑战

    原材料价格均出现全面上涨,甚至有专家预测:铜价未来两年将会有75%的涨幅。 大环境的变化,也给连接器的生产和制造带来了冲击和挑战,市面上不少连接器厂商都不得不选择涨价应对。 近期,《国际线缆与连接》记者联系到浙江温达电
    的头像 发表于 04-26 10:33 306次阅读

    EMI电磁干扰:挑战与机遇并存,如何应对是关键

    深圳比创达EMC|EMI电磁干扰:挑战与机遇并存,如何应对是关键
    的头像 发表于 04-11 10:24 523次阅读
    EMI电磁干扰:<b class='flag-5'>挑战</b>与机遇并存,如何<b class='flag-5'>应对</b>是关键

    Arm支持ISO/SAE 21434标准,应对汽车产品安全新挑战

    专为汽车领域设计的 Arm 汽车增强 (Automotive Enhanced, AE) IP 旨在应对汽车行业所面临的艰巨计算挑战。而这就不得不提到“网络安全”这个关键话题。
    的头像 发表于 03-14 12:20 1166次阅读

    凌感英飞凌XDP7系列热插拔控制器介绍

    该系列主要有两款产品,XDP700主要用于电信基础设施,XDP710则更适合服务器、工业和数据中心电源系统等应用中,以实现安全的热插拔操作和系统保护。
    的头像 发表于 02-20 15:23 724次阅读

    5G毫米波与Sub-6GHz频段的特性与技术挑战

    5G毫米波与Sub-6GHz频段的特性与技术挑战
    发表于 01-24 14:22 1484次阅读
    5G毫米波与Sub-6GHz频段的<b class='flag-5'>特性</b>与技术<b class='flag-5'>挑战</b>

    SOLIDWORKS 2024 应对工业设备设计的独特挑战

    在工业设备设计中,由于其复杂性和特殊性,设计师经常面临一系列独特的挑战。SOLIDWORKS 2024作为一款强大的三维CAD软件,为设计师提供了一系列工具和功能,以应对这些挑战
    的头像 发表于 01-02 14:08 435次阅读