0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

八种主流深度学习框架的介绍

龙腾亚太 来源:龙腾亚太 作者:龙腾亚太 2022-04-26 18:45 次阅读

导读:近几年随着深度学习算法的发展,出现了许多深度学习框架。这些框架各有所长,各具特色。常用的开源框架有TensorFlow、Keras、Caffe、PyTorch、Theano、CNTK、MXNet、PaddlePaddle、Deeplearning4j、ONNX等。

框架名称:TensorFlow

主要维护方:Google

支持的语言:C++/Python/Java/R 等

框架名称:Keras

主要维护方:Google

支持的语言:Python/R

框架名称:Caffe

主要维护方:BVLC

支持的语言:C++/Python/Matlab

框架名称:PyTorch

主要维护方:Facebook

支持的语言:C/C++/Python

框架名称:Theano

主要维护方:UdeM

支持的语言:Python

框架名称:CNTK

主要维护方:Microsoft

支持的语言:C++/Python/C#/.NET/Java/R

框架名称:MXNet

主要维护方:DMLC

支持的语言:C++/Python/R等

框架名称:PaddlePaddle

主要维护方:Baidu

支持的语言:C++/Python

框架名称:Deeplearning4j

主要维护方:Eclipse

支持的语言:Java/Scala等

框架名称:ONNX

主要维护方:Microsoft/ Facebook

支持的语言:Python/R

下面开始对各框架进行概述,让读者对各个框架有个简单的认知,具体的安装及使用方法不在本文赘述。

01 TensorFlow

谷歌的TensorFlow可以说是当今最受欢迎的开源深度学习框架,可用于各类深度学习相关的任务中。TensorFlow = Tensor + Flow,Tensor就是张量,代表N维数组;Flow即流,代表基于数据流图的计算。

TensorFlow是目前深度学习的主流框架,其主要特性如下所述。

TensorFlow支持Python、JavaScript、C ++、Java、Go、C#、Julia和R等多种编程语言。

TensorFlow不仅拥有强大的计算集群,还可以在iOSAndroid等移动平台上运行模型。

TensorFlow编程入门难度较大。初学者需要仔细考虑神经网络的架构,正确评估输入和输出数据的维度和数量。

TensorFlow使用静态计算图进行操作。也就是说,我们需要先定义图形,然后运行计算,如果我们需要对架构进行更改,则需要重新训练模型。选择这样的方法是为了提高效率,但是许多现代神经网络工具已经能够在学习过程中改进,并且不会显著降低学习速度。在这方面,TensorFlow的主要竞争对手是PyTorch。

RStudio提供了R与TensorFlow的API接口,RStudio官网及GitHub上也提供了TensorFlow扩展包的学习资料

02 Keras

Keras是一个对小白用户非常友好且简单的深度学习框架。如果想快速入门深度学习, Keras将是不错的选择。

Keras是TensorFlow高级集成API,可以非常方便地和TensorFlow进行融合。Keras在高层可以调用TensorFlow、CNTK、Theano,还有更多优秀的库也在被陆续支持中。Keras的特点是能够快速搭建模型,是高效地进行科学研究的关键。

Keras的基本特性如下:

高度模块化,搭建网络非常简洁;

API简单,具有统一的风格;

易扩展,易于添加新模块,只需要仿照现有模块编写新的类或函数即可。

RStudio提供了R与Keras的API接口,RStudio的官网及GitHub上也提供了Keras扩展包的学习资料。

03 Caffe

Caffe是由AI科学家贾扬清在加州大学伯克利分校读博期间主导开发的,是以C++/CUDA代码为主的早期深度学习框架之一,比TensorFlow、MXNet、PyTorch等都要早。Caffe需要进行编译安装,支持命令行、Python和Matlab接口,单机多卡、多机多卡等都可以很方便使用。

Caffe的基本特性如下。

以C++/CUDA/Python代码为主,速度快,性能高。

工厂设计模式,代码结构清晰,可读性和可拓展性强。

支持命令行、Python和Matlab接口,使用方便。

CPUGPU之间切换方便,多GPU训练方便。

工具丰富,社区活跃。

同时,Caffe的缺点也比较明显,主要包括如下几点。

源代码修改门槛较高,需要实现正向/反向传播。

不支持自动求导。

不支持模型级并行,只支持数据级并行。

不适合非图像任务。

虽然Caffe已经提供了Matlab和Python接口,但目前不支持R语言。caffeR为Caffe提供了一系列封装功能,允许用户在R语言上运行Caffe,包括数据预处理和网络设置,以及监控和评估训练过程。该包还没有CRAN版本,感兴趣的读者可以在GitHub找到caffeR包的安装及使用的相关内容。

04 PyTorch

PyTorch是Facebook团队于2017年1月发布的一个深度学习框架,虽然晚于TensorFlow、Keras等框架,但自发布之日起,其受到的关注度就在不断上升,目前在GitHub上的热度已经超过Theano、Caffe、MXNet等框架。

PyTroch主要提供以下两种核心功能:

支持GPU加速的张量计算;

方便优化模型的自动微分机制。

PyTorch的主要优点如下。

简洁易懂:PyTorch的API设计相当简洁一致,基本上是tensor、autograd、nn三级封装,学习起来非常容易。

便于调试:PyTorch采用动态图,可以像普通Python代码一样进行调试。不同于TensorFlow,PyTorch的报错说明通常很容易看懂。

强大高效:PyTorch提供了非常丰富的模型组件,可以快速实现想法。

05 Theano

Theano诞生于2008年,由蒙特利尔大学的LISA实验室开发并维护,是一个高性能的符号计算及深度学习框架。它完全基于Python,专门用于对数学表达式的定义、求值与优化。得益于对GU的透明使用,Theano尤其适用于包含高维度数组的数学表达式,并且计算效率比较高。

因Theano出现的时间较早,后来涌现出一批基于Theano的深度学习库,并完成了对Theano的上层封装以及功能扩展。在这些派生库中,比较著名的就是本书要学习的Keras。Keras将一些基本的组件封装成模块,使得用户在编写、调试以及阅读网络代码时更加清晰。

06 CNTK

CNTK(Microsoft Cognitive Toolkit)是微软开源的深度学习工具包,它通过有向图将神经网络描述为一系列计算步骤。在有向图中,叶节点表示输入值或网络参数,其他节点表示其输入上的矩阵运算。

CNTK允许用户非常轻松地实现和组合流行的模型,包括前馈神经网络(DNN)、卷积神经网络(CNN)和循环神经网络(RNN、LSTM)。与目前大部分框架一样,CNTK实现了自动求导,利用随机梯度下降方法进行优化。

CNTK的基本特性如下。

CNTK性能较好,按照其官方的说法,它比其他的开源框架性能都要好。

适合做语音任务,CNTK本就是微软语音团队开源的,自然更适合做语音任务,便于在使用RNN等模型以及时空尺度时进行卷积。

微软开发的CNTK-R包提供了R与CNTK的API接口。

07 MXNet

MXNet框架允许混合符号和命令式编程,以最大限度地提高效率和生产力。MXNet的核心是一个动态依赖调度程序,可以动态地自动并行化符号和命令操作。其图形优化层使符号执行更快,内存效率更高。

MXNet的基本特性如下。

灵活的编程模型:支持命令式和符号式编程模型。

多语言支持:支持C++、Python、R、Julia、JavaScript、Scala、Go、Perl等。事实上,它是唯一支持所有R函数的构架。

本地分布式训练:支持在多CPU/GPU设备上的分布式训练,使其可充分利用云计算的规模优势。

性能优化:使用一个优化的C++后端引擎实现并行I/O和计算,无论使用哪种语言都能达到最佳性能。

云端友好:可直接与S3、HDFS和Azure兼容。

08 ONNX

ONNX(Open Neural Network eXchange,开放神经网络交换)项目由微软、亚马逊、Facebook和IBM等公司共同开发,旨在寻找呈现开放格式的深度学习模型。ONNX简化了在人工智能不同工作方式之间传递模型的过程,具有各种深度学习框架的优点。

ONNX的基本特性如下。

ONNX使模型能够在一个框架中进行训练并转移到另一个框架中进行预测。

ONNX模型目前在Caffe2、CNTK、MXNet和PyTorch中得到支持,并且还有与其他常见框架和库的连接器

onnx-r包提供了R与ONNX的API接口。

关于作者:谢佳标,资深AI技术专家和数据挖掘专家,拥有超过14年的技术研发和管理经验。精通Python和Keras等深度学习框架,在数据挖掘和人工智能技术领域有非常深厚的积累。连续6年(2017~2022年)被微软评为数据科学和AI方向MVP。资深R语言技术专家,“中国现场统计研究会大数据统计分会”第一届理事。历届中国R语言和数据科学大会特邀演讲嘉宾,受邀在国内多所高校举行以数据主题的公益讲座。

审核编辑:符乾江

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 深度学习
    +关注

    关注

    73

    文章

    5503

    浏览量

    121147
  • 迁移学习
    +关注

    关注

    0

    文章

    74

    浏览量

    5561
收藏 人收藏

    评论

    相关推荐

    NPU在深度学习中的应用

    设计的硬件加速器,它在深度学习中的应用日益广泛。 1. NPU的基本概念 NPU是一专门针对深度学习算法优化的处理器,它与传统的CPU和G
    的头像 发表于 11-14 15:17 547次阅读

    GPU深度学习应用案例

    GPU在深度学习中的应用广泛且重要,以下是一些GPU深度学习应用案例: 一、图像识别 图像识别是深度学习
    的头像 发表于 10-27 11:13 393次阅读

    AI大模型与深度学习的关系

    AI大模型与深度学习之间存在着密不可分的关系,它们互为促进,相辅相成。以下是对两者关系的介绍: 一、深度学习是AI大模型的基础 技术支撑 :
    的头像 发表于 10-23 15:25 713次阅读

    NVIDIA推出全新深度学习框架fVDB

    在 SIGGRAPH 上推出的全新深度学习框架可用于打造自动驾驶汽车、气候科学和智慧城市的 AI 就绪型虚拟表示。
    的头像 发表于 08-01 14:31 601次阅读

    PyTorch深度学习开发环境搭建指南

    PyTorch作为一流行的深度学习框架,其开发环境的搭建对于深度学习研究者和开发者来说至关重要
    的头像 发表于 07-16 18:29 1033次阅读

    深度学习与nlp的区别在哪

    深度学习和自然语言处理(NLP)是计算机科学领域中两个非常重要的研究方向。它们之间既有联系,也有区别。本文将介绍深度学习与NLP的区别。
    的头像 发表于 07-05 09:47 922次阅读

    深度学习常用的Python库

    深度学习作为人工智能的一个重要分支,通过模拟人类大脑中的神经网络来解决复杂问题。Python作为一流行的编程语言,凭借其简洁的语法和丰富的库支持,成为了深度
    的头像 发表于 07-03 16:04 645次阅读

    TensorFlow与PyTorch深度学习框架的比较与选择

    深度学习作为人工智能领域的一个重要分支,在过去十年中取得了显著的进展。在构建和训练深度学习模型的过程中,深度
    的头像 发表于 07-02 14:04 969次阅读

    深度学习模型训练过程详解

    详细介绍深度学习模型训练的全过程,包括数据预处理、模型构建、损失函数定义、优化算法选择、训练过程以及模型的评估与调优。
    的头像 发表于 07-01 16:13 1263次阅读

    深度学习的模型优化与调试方法

    深度学习模型在训练过程中,往往会遇到各种问题和挑战,如过拟合、欠拟合、梯度消失或爆炸等。因此,对深度学习模型进行优化与调试是确保其性能优越的关键步骤。本文将从数据预处理、模型设计、超参
    的头像 发表于 07-01 11:41 820次阅读

    FPGA在深度学习应用中或将取代GPU

    将 AI 框架模型映射到硬件架构。 Larzul 的公司 Mipsology 希望通过 Zebra 来弥合这一差距。Zebra 是一软件平台,开发者可以轻松地将深度学习代码移植到 F
    发表于 03-21 15:19

    【技术科普】主流深度学习模型有哪些?AI开发工程师必备!

    深度学习在科学计算中获得了广泛的普及,其算法被广泛用于解决复杂问题的行业。所有深度学习算法都使用不同类型的神经网络来执行特定任务。 什么是深度
    的头像 发表于 01-30 15:26 626次阅读
    【技术科普】<b class='flag-5'>主流</b>的<b class='flag-5'>深度</b><b class='flag-5'>学习</b>模型有哪些?AI开发工程师必备!

    详解深度学习、神经网络与卷积神经网络的应用

    处理技术也可以通过深度学习来获得更优异的效果,比如去噪、超分辨率和跟踪算法等。为了跟上时代的步伐,必须对深度学习与神经网络技术有所学习和研究
    的头像 发表于 01-11 10:51 2037次阅读
    详解<b class='flag-5'>深度</b><b class='flag-5'>学习</b>、神经网络与卷积神经网络的应用

    目前主流深度学习算法模型和应用案例

    深度学习在科学计算中获得了广泛的普及,其算法被广泛用于解决复杂问题的行业。所有深度学习算法都使用不同类型的神经网络来执行特定任务。
    的头像 发表于 01-03 10:28 1941次阅读
    目前<b class='flag-5'>主流</b>的<b class='flag-5'>深度</b><b class='flag-5'>学习</b>算法模型和应用案例

    PatchMatch MVS求解器中深度估计的挑战性问题

    本文提出了一全新的学习型PatchMatch MVS框架,DS-PMNet,并嵌入了DeformSampler。这个框架能够以端到端的方式学习
    的头像 发表于 01-02 09:25 610次阅读
    PatchMatch MVS求解器中<b class='flag-5'>深度</b>估计的挑战性问题