0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

使用氮化镓(GaN)提高电源(PSU)能效

安森美 来源:安森美 作者:Yong Ang 2022-04-27 10:13 次阅读

作者:安森美策略营销总监Yong Ang

提高能效一直是电源制造商的一个长期目标。这是真正的“双赢”,因为这不仅降低运行成本,而且减少了以热的形式浪费能量,意味着需要更少的散热管理,从而减小了电源的尺寸和成本。其他好处包括需要更少的冷却处理以减少风扇的噪声。

过去,电源(PSU)的能效通常引用一个单一的数字来说明可能的最佳能效。然而,在许多应用中,PSU在不同的负载水平下工作,很少能达到标题中提到的能效标准。特别是,当PSU在较低的功率水平下运行时,这就是个问题。

—80 Plus是个推荐标准,旨在解决整个负载范围内的高能效问题。它规定了从“基本”到“titanium”的六个级别在20%、50%和100%负载下要求达到的最低能效水平是80%。

—Titanium级别是最高的,比80 Plus增加了要求,即使在10%的负载需达到90%的能效,这是最严格的要求,只有更高功率的PSU才有可能实现。

氮化镓(GaN) – 理想的开关?

虽然硅基半导体器件近年来有了很大的改进,但80 Plus的严苛要求意味着需要新的技术来达到最高能效水平——特别是Titanium标准。碳化硅(SiC)和氮化镓等宽禁带(WBG)技术正成为主流,使设计的能效高达99%。

SiC可能更成熟,但GaN具有更低的导通电阻和更快的开关速度,有些人将其描述为“理想的开关”。基于GaN的高电子迁移率晶体管(HEMT)显然在具挑战的高能效应用中具有很大的优势。最简单的GaN开关被配置为常开,但现在常见的增强型或“e型”在施加零栅源电压时是关断的。这样做的好处是使它们至少在最初以类似于硅MOSFET工作的方式工作。

服务器PSU是最高要求的应用之一,只允许4%的损耗,使图腾柱PFC(TPPFC)级通常与LLC或移相全桥(PSFB)等谐振DC-DC转换器同步整流输出级相结合。

debc12c6-c58c-11ec-bce3-dac502259ad0.png

图1:采用图腾柱PFC级和PSFB全桥的服务器PSU设计,采用GaN开关

在整个PSU中分担损耗,允许每个阶段有2%的损耗,这说明必须在GaN开关的开关和静态损耗之间取得良好的平衡。

增加裸片面积可减少静态损耗,但这也会增加器件电容,反过来又会增加每个开关周期所需的电荷。这意味着减少静态损耗将导致开关(动态)损耗的增加,尽管这种影响在GaN器件中相当小,而且明显好于硅基器件。

门驱动挑战

e-GaN HEMT器件与硅基开关之间最显著的区别是对非常特定的门极驱动的要求。输入电容(CISS)通常很低,它是并联栅极-源极和栅极-漏极的电容,两者都很低。然而,门极电流的峰值可达到1 A,这就要求门极驱动具有较低的源阻抗。在实际应用中,加入了一些源极电阻来控制漏极的dV/dt,从而消除了电压过冲和/或振荡。

最佳的门极电阻在导通和关断时是不一样的,所以通常的做法是使用单独的电阻和一个二极管。在更精密的电路中,可对门极电流进行有源控制(有电压限制)。但最小化和平衡任何传播延迟以充分利用GaN的速度优势非常重要。

e-GaN HEMT的阈值电压约为1.6 V,因此在开关时出现的瞬态可能会导致功率损耗,因为器件会虚假地导通,而且可能会出现不良的“击穿”,从而损坏器件。如果漏极上有较高的dV/dt,这可能是由于电荷通过栅极-漏极或“米勒”电容注入到门极而发生的。同样,当漏极-源极关断di/dt较高时,任何与门极驱动电路共用的源极电感都可能导致电压瞬变,从而对抗门极关断电压。

为了应对这些影响,设计中需控制dV/dt和di/dt,使其低于可能的最大值。这有助于减少EMI,并且可以在源头提供一个“开尔文”连接以分离门极驱动回路。

现成的集成GaN驱动器

驱动GaN器件的最佳和最简单的方法是使用预先优化的集成驱动器方案,如安森美(onsemi)的NCP58920或NCP58921。 这些器件是650 V增强型GaN器件,具有150 mΩ和50 mΩ的导通电阻,适用于所有常见的转换器拓扑结构,包括TPPFC,它们在“硬开关”应用中表现特别好,其中GaN具有显著优势。

在一个典型的低成本、TPPFC+LLC转换器中,一对NCP58921器件能提供超过250 W的直流输出,能效近95%。但在服务器电源中,以优化的导通模式和磁学,可达到80+ Titanium的目标。

dedb957e-c58c-11ec-bce3-dac502259ad0.png

图2:使用安森美的NCP58291集成GaN+驱动器的PSU,能效峰值约95%

NCP5892x器件采用热能效高的PQFN 8x8封装,焊盘裸露,结点到板的热阻为0.4 °C/W。驱动器部分的电源电压是非触发、非门限的,最低8.5 V,最高20 V,因为该器件内部含一个6 V钳位的低压降稳压器(LDO)用于GaN HEMT驱动器,如果需要还可集成一个用于外部数字隔离器电源的5 V LDO。

总结

GaN器件是最高性能的开关,提供极低的静态和动态损耗。当与驱动器共同封装时,它们在高性能电源转换器设计中简单应用,可满足严格的能效规范,如80 Plus Titanium。

原文标题:符合80 Plus Titanium标准的氮化镓设计挑战

文章出处:【微信公众号:安森美】欢迎添加关注!文章转载请注明出处。

审核编辑:汤梓红

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 安森美
    +关注

    关注

    32

    文章

    1682

    浏览量

    92008
  • 氮化镓
    +关注

    关注

    59

    文章

    1631

    浏览量

    116344
  • GaN
    GaN
    +关注

    关注

    19

    文章

    1935

    浏览量

    73398

原文标题:符合80 Plus Titanium标准的氮化镓设计挑战

文章出处:【微信号:onsemi-china,微信公众号:安森美】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    氮化GaN技术助力电源管理革新

    等技术,从而提高电源管理系统的效率和规模。(白皮书下载:GaN将能提高到一个新的水平。)  
    发表于 11-20 10:56

    氮化技术推动电源管理不断革新

    数据中心),或任何可以处理高达数百伏高电压的设备,均可受益于氮化等技术,从而提高电源管理系统的效率和规模。(白皮书下载:GaN将能
    发表于 03-14 06:45

    什么是氮化GaN)?

    、高功率、高效率的微电子、电力电子、光电子等器件方面的领先地位。『三点半说』经多方专家指点查证,特推出“氮化系列”,告诉大家什么是氮化GaN
    发表于 07-31 06:53

    氮化GaN接替硅支持高能高频电源设计方案

    在所有电力电子应用中,功率密度是关键指标之一,这主要由更高能和更高开关频率驱动。随着基于硅的技术接近其发展极限,设计工程师现在正寻求宽禁带技术如氮化GaN)来提供方案。
    发表于 10-28 06:01

    氮化GaN技术促进电源管理的发展

    的节能。这些电力足以为30多万个家庭提供一年的电量。 任何可以直接从电网获得电力的设备(从智能手机充电器到数据中心),或任何可以处理高达数百伏高电压的设备,均可受益于氮化等技术,从而提高电源
    发表于 11-03 08:59

    如何学习氮化电源设计从入门到精通?

    精通,这个系列直播共分为八讲,从0到1全面解密电源设计,带工程师完整地设计一个高效氮化电源,包括元器件选型、电路设计和PCB布线、电路测试和优化技巧、磁性元器件的设计和优化、环路分析
    发表于 11-18 06:30

    请问氮化GaN是什么?

    氮化GaN是什么?
    发表于 06-16 08:03

    氮化能否实现高能、高频电源的设计?

    GaN如何实现快速开关?氮化能否实现高能、高频电源的设计?
    发表于 06-17 10:56

    传统的硅组件、碳化硅(Sic)和氮化(GaN)

    应用领域,SiC和GaN形成竞争。随着碳化硅(SiC)、氮化(GaN)等新材料陆续应用在二极管、场晶体管(MOSFET)等组件上,电力电
    发表于 09-23 15:02

    如何实现氮化的可靠运行

    我经常感到奇怪,我们的行业为什么不在加快氮化 (GaN) 晶体管的部署和采用方面加大合作力度;毕竟,大潮之下,没人独善其身。每年,我们都看到市场预测的前景不太令人满意。但通过共同努
    发表于 11-16 06:43

    什么是氮化功率芯片?

    氮化(GaN)功率芯片,将多种电力电子器件整合到一个氮化芯片上,能有效提高产品充电速度、效率
    发表于 06-15 14:17

    什么是氮化GaN)?

    氮化,由(原子序数 31)和氮(原子序数 7)结合而来的化合物。它是拥有稳定六边形晶体结构的宽禁带半导体材料。禁带,是指电子从原子核轨道上脱离所需要的能量,氮化
    发表于 06-15 15:41

    为什么氮化(GaN)很重要?

    % 的能源浪费,相当于节省了 100 兆瓦时太阳和1.25 亿吨二氧化碳排放量。 氮化的吸引力不仅仅在于性能和系统层面的能源利用率的提高。当我们发现,制造一颗片
    发表于 06-15 15:47

    氮化(GaN)技术超越硅实现更高电源转换

    氮化(GaN)技术超越硅 实现更高电源转换效率——来自安森美半导体Onsemi
    发表于 12-23 11:06 28次下载

    氮化(GaN)是什么

    氮化(GaN)是什么 氮化是一种无机物,化学式GaN,是氮和
    发表于 02-17 14:18 9715次阅读