0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

纳米声学技术及其应用

MEMS 来源:MEMS 作者:MEMS 2022-04-27 10:38 次阅读

据麦姆斯咨询介绍,随着纳米声学性能的扩展和技术的完善,纳米声学应用正迅速发展。本文简要探讨了纳米声学技术及其应用,包括纳米声学传感、纳米声学操纵和纳米声学表征,并对其未来趋势进行了展望。

什么是声学?

“声学(Acoustics)”一词源于希腊语单词“Akoustos”,意思是“听得见的”。声学是一门研究声音的产生、传播、控制和效果的科学。声学涵盖一系列主题,包括噪声控制、医学领域的超声波、热声制冷、生物声学、导航声纳、纳米声学、地震学和电声通信等。

超声波的频率高于人耳听力范围(高于20 kHz)。通常,超声波通过采用压电材料的换能器产生,利用逆压电效应将电能转换为声能。

纳米声学背景

20世纪80年代,随着纳米科学的进步,纳米技术开始受到学界各个领域的关注。用于超声研究的纳米材料和纳米器件,彻底改变了应用超声波的传统方法。

过去几年来,各种纳米材料的引入,赋能超声技术支持各种疾病的诊断和治疗,受到了越来越广泛的关注,成为医学超声检测的一个重要领域。如今,纳米技术已经进入各种能够监测和控制纳米颗粒的超声波仪器。

8bbbb094-c58d-11ec-bce3-dac502259ad0.jpg

纳米声学应用


纳米声学表征

扫描声学显微镜(SAM)

高频声波的波长较短,可用于开发声学显微镜。这些显微镜具有与光学显微镜相近的分辨率。科学家们已经在显微镜中利用纳米声学这一概念开发了扫描声学显微镜(SAM)。

早期使用SAM技术的显微镜最高可以提供10 μm的分辨率。后来,改进后的版本可以在高达260 nm的波长下工作。该技术主要用于生物学、结构内成像和光学不透明样品的表征。

原子力声学显微镜(AFAM)

SAM的分辨率有限。因此,为了在亚微米分辨率下表征材料特性,使用了另一种被称为原子力声学显微镜(AFAM)的技术。该技术可用于表征和映射纳米级的机械性能。例如,根据最近的研究,该技术已被用于精确测量纳米级分辨率的纳米晶铁氧体等材料的动态杨氏模量。该技术的分辨率已高达10 nm。

纳米声学操纵

随着纳米制造、生物医学和材料工程等纳米技术的研究进展,操纵纳米颗粒、纳米液滴和纳米细胞正变得至关重要。这些操纵功能包括纳米物体的定向、捕获、分类、富集和组装等。

研究人员已经开发出许多替代策略来实现这些操纵功能,可分为电学、光学、微流体、磁学、原子力显微镜、机械和声学方法。

每种方法都有其自身的优缺点,相比之下,基于声学的系统比其他技术存在若干优势。例如,基于声学的技术可以提供多种操纵功能。这些方法也不需要特定的样本属性,可以通过简单的器件结构来执行。

纳米声学传感

声表面波(SAW)器件可以对机械、电气、化学信号和其他扰动做出响应。这些器件的响应特性使它们可以作为SAW传感器

这些纳米声学传感器具有成本低、灵敏度高、卓越的响应时间、紧凑的尺寸等优点。此外,基于SAW的纳米声学传感器还具有优异的稳定性、选择性和线性度,并提供合适的传感表面叉指换能器(IDT)和压电基板设计。

除了基于SAW的传感器,其他纳米声学传感器也在开发中。例如,科学家们开发了一种柔性压力传感器,通过在两片聚二甲基硅氧烷(PMDS)之间封装金纳米线制成。这种纳米声学传感器展示了响应速度快、稳定性高、灵敏度高、功耗低等特点。这些特性结合机械柔性使该传感器能够实时监测心率,以及探测微小的振动。

未来展望

纳米声学操纵在纳米制造和生物医学等各种应用中展示了巨大的前景。不过,关于微通道内产生SAW的基本原理的许多问题仍然没有得到解答。

还需要进行更深入的研究,以提高我们对这些现象的理解。纳米声学的实际应用前景包括实现高精度和可控性的集成器件。

由于SAW传感平台的特性优势,面向提高选择性的SAW器件功能化,有望成为一个重要的研究领域。SAW传感研究应继续探索新的传感材料,以提高性能并扩大应用范围。

此外,还需要增强当前基于SAW的纳米声学传感器研究,因为其局限性之一是需要昂贵的电子检测系统,如网络分析仪,以有效记录器件行为。因此,未来需要小型化便携式数据采集器件,以捆绑到高度集成且具成本效益的系统中。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 纳米材料
    +关注

    关注

    3

    文章

    172

    浏览量

    18844
  • 电能
    +关注

    关注

    1

    文章

    661

    浏览量

    36668
  • 声学
    +关注

    关注

    1

    文章

    50

    浏览量

    13665

原文标题:纳米声学技术及应用概览

文章出处:【微信号:MEMSensor,微信公众号:MEMS】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    电子束光刻技术实现对纳米结构特征的精细控制

    电子束光刻技术使得对构成多种纳米技术基础的纳米结构特征实现精细控制成为可能。纳米结构制造与测量的研究人员致力于提升纳米尺度下的光刻精度,并开
    的头像 发表于 10-18 15:23 212次阅读
    电子束光刻<b class='flag-5'>技术</b>实现对<b class='flag-5'>纳米</b>结构特征的精细控制

    打破技术垄断,持续创新应用!回顾2024全国声学大会Aigtek安泰电子高光时刻!

    大会将继续推动“产、学、研、用”全领域的交流融合互动,审视时代的发展趋势,拓展声学领域的发展空间,宏观论述技术趋势,专题聚焦前沿技术,广泛普及声学知识,展示产业最
    的头像 发表于 10-01 08:00 256次阅读
    打破<b class='flag-5'>技术</b>垄断,持续创新应用!回顾2024全国<b class='flag-5'>声学</b>大会Aigtek安泰电子高光时刻!

    纳米压印技术的分类和优势

    在探索微观世界的奥秘中,纳米技术以其独特的尺度和潜力,开启了一扇通往未知领域的大门。纳米压印技术(Nanoimprint Lithography, NIL),作为纳米制造领域的一项高精
    的头像 发表于 08-26 10:05 692次阅读
    <b class='flag-5'>纳米</b>压印<b class='flag-5'>技术</b>的分类和优势

    声学定义和音高单位

    学科,研究从微观到宏观、从次声(长波)到超声(短波)的一切形式的线性与非线性机械波现象。随着19世纪无线电技术的发明和应用,声学研究方向已出现很多分支:基础声学
    的头像 发表于 06-22 08:30 531次阅读
    <b class='flag-5'>声学</b>定义和音高单位

    2024年声学科学与技术高端论坛圆满落幕,重温Aigtek精彩瞬间

    本界会议回顾2024年声学科学与技术高端论坛,于2024年6月15日至17日在厦门佰翔软件园酒店顺利召开。本次大会以“聚焦声学科技前沿对话领域学术高峰”为主题,由中国声学学会副理事长兼
    的头像 发表于 06-22 08:01 284次阅读
    2024年<b class='flag-5'>声学</b>科学与<b class='flag-5'>技术</b>高端论坛圆满落幕,重温Aigtek精彩瞬间

    Aigtek诚邀您莅临2024年声学科学与技术高端论坛!

    6月14日-17日,2024年声学科学与技术高端论坛将于厦门佰翔软件园酒店召开,届时Aigtek安泰电子将携一众明星产品及专业测试解决方案亮相本次论坛,我们诚邀您莅临Aigtek展位参观、洽谈与观摩
    的头像 发表于 06-04 08:01 276次阅读
    Aigtek诚邀您莅临2024年<b class='flag-5'>声学</b>科学与<b class='flag-5'>技术</b>高端论坛!

    纳米技术的特点 纳米技术有哪些用途

    纳米技术是一种高度前沿的技术,利用控制和操纵物质的尺寸在纳米级别来创造新的材料和应用。纳米技术的特点主要包括以下几个方面:高比表面积、尺寸效应、量子效应和可调控性。 首先,
    的头像 发表于 01-19 14:06 8530次阅读

    纳米纳米复合传感器的研究进展综述

    一维空心圆柱形碳纳米纳米结构自被发现以来,在纳米技术的发展中起着至关重要的作用。
    的头像 发表于 01-18 09:18 1156次阅读
    碳<b class='flag-5'>纳米</b>管<b class='flag-5'>纳米</b>复合传感器的研究进展综述

    索雷碳纳米聚合物材料技术的优势

    电子发烧友网站提供《索雷碳纳米聚合物材料技术的优势.docx》资料免费下载
    发表于 01-16 15:29 0次下载

    用于体内高分辨率神经记录和刺激的纳米多孔石墨烯薄膜微电极

    近期,来自西班牙加泰罗尼亚纳米科学与纳米技术研究所(ICN2)等机构的研究人员介绍了一种基于纳米多孔石墨烯的薄膜技术及其形成柔性神经界面的工
    的头像 发表于 01-15 15:55 700次阅读
    用于体内高分辨率神经记录和刺激的<b class='flag-5'>纳米</b>多孔石墨烯薄膜微电极

    如何选择索雷碳纳米聚合物材料技术

    电子发烧友网站提供《如何选择索雷碳纳米聚合物材料技术.docx》资料免费下载
    发表于 12-29 11:02 0次下载

    Aigtek水声学分会2023年学术交流会圆满收官

    声学分会2023年学术交流会2023年12月9日,为期三天的水声学分会2023年学术交流会于河南商丘圆满落幕,Aigtek安泰电子作为国内深耕水声领域测试多年的高科技企业,也携多款水声功放及其
    的头像 发表于 12-16 08:01 357次阅读
    Aigtek水<b class='flag-5'>声学</b>分会2023年学术交流会圆满收官

    索雷碳纳米聚合物材料技术的优势

    索雷碳纳米聚合物材料技术的优势
    发表于 12-04 10:18 0次下载

    无标记等离子体纳米成像新技术

      一种使用等离子体激元的新型成像技术能够以增强的灵敏度观察纳米颗粒。休斯顿大学纳米生物光子学实验室的石伟川教授和他的同事正在研究纳米材料和设备在生物医学、能源和环境方面的应用。该小组
    的头像 发表于 11-27 06:35 343次阅读

    光学纳米粒子的光学捕获及其应用介绍

    《光电科学》发表的一篇新文章回顾了光学捕获的光学纳米粒子的基本原理和应用。光学纳米粒子是光子学的关键要素之一。
    的头像 发表于 11-25 14:25 1007次阅读
    光学<b class='flag-5'>纳米</b>粒子的光学捕获<b class='flag-5'>及其</b>应用介绍