0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

Hybridizer编译器在GPU上实现高级C#功能

星星科技指导员 来源:NVIDIA 作者:NVIDIA 2022-04-28 16:19 次阅读

Hybridizer 是一个来自 Altimesh 的编译器,它允许您从 C 代码或.NET 程序集编程 GPUs 和其他加速器。使用修饰符号来表示并行性, Hybridizer 生成针对多核 CPUs 和 GPUs 优化的源代码或二进制文件。在这篇博文中,我们展示了 CUDA 的目标。

图 1 显示了混合器编译管道。使用 Parallel.For 等并行化模式,或者像在 CUDA 中那样显式地分配并行工作,您可以从加速器的计算马力中获益,而无需了解其内部架构的所有细节。

图 1 杂交剂管道。

[EntryPoint]
public static void Run(double[] a, double[] b, int N)
{
  Parallel.For(0, N, i => { a[i] += b[i]; });
}

您可以使用 NVIDIA Nsight Visual Studio Edition 在 GPU 上调试和分析这段代码。Hybridizer 现高级 C#功能,包括虚拟功能和泛型。

哪里可以获取 Hybridizer

Hybridizer 有 两个版本 :

Hybridizer 软件套件:启用 CUDA 、 AVX 、 AVX2 、 AVX512 目标并输出源代码。可以查看此源代码,这在投资银行等一些业务中是强制性的。 Hybridizer 软件套件是根据客户 应要求 获得许可的。

杂交者基本要素 :仅启用 CUDA 目标并仅输出二进制文件。 Hybridizer Essentials 是免费的 Visual Studio 扩展 ,没有硬件限制。 您可以在 GitHub 上找到一组基本的代码示例和教育材料 。这些样本也可以用来重现我们的性能结果。

在提供自动默认行为的同时, Hybridizer 在每个阶段都提供了完全的开发人员控制,允许您重用现有的特定于设备的代码、现有的外部库或定制的手工代码片段。

调试和分析

使用调试信息编译时,可以在目标硬件上运行优化的代码时,在 Microsoft Visual Studio 中调试 Hybridizer C #/。 NET 代码。例如,用 C 编写的程序可以在 Visual Studio 中命中 C 文件中的断点,并且可以探索驻留在 GPU 上的本地变量和对象数据。

图 2 :使用 Hybridizer 和 NVIDIA Nsight VisualStudio Edition 调试运行在 GPU 上的 C 代码。

您可以在复杂的项目中集成 Hybridizer ,即使在代码不可用或混淆的库中也是如此,因为 Hybridizer 操作的是 MSIL 字节码。我们在 我们的博客帖子 中展示了这种能力,即在不修改库的情况下,用杂交子加速大型图像处理库。在 MSIL 字节码上操作还支持在。 Net 虚拟机上构建的各种语言,例如 VB 。 Net 和 F 。

所有这些灵活性并不是以性能损失为代价的。正如我们的 benchmark 所说明的,杂交器生成的代码可以执行与手写代码一样好的性能。您可以使用性能分析器,如 NVIDIA Nsight 和 NVIDIA 可视化探查器来测量生成的二进制文件的性能,性能指标引用原始源代码(例如 C )。

一个简单的例子:曼德尔布洛特

作为第一个示例,我们演示了在 NVIDIA GeForce GTX 1080 Ti GPU ( Pascal 体系结构;计算能力 6 。 1 )上运行的 Mandelbrot 分形的渲染。

Mandelbrot C 代码

下面的代码片段显示了纯 C #。它在 CPU 上平稳运行,没有任何性能损失,因为大多数代码修改都是在运行时没有影响的属性(例如 Run 方法上的 EntryPoint 属性)。

[EntryPoint]
public static void Run(float[,] result)
{
    int size = result.GetLength(0);
    Parallel2D.For(0, size, 0, size, (i, j) => {
        float x = fromX + i * h;
        float y = fromY + j * h;
        result[i, j] = IterCount(x, y);
    });
}

public static float IterCount(float cx, float cy)
{
    float result = 0.0F;
    float x = 0.0f, y = 0.0f, xx = 0.0f, yy = 0.0f;
    while (xx + yy <= 4.0f && result < maxiter) {
        xx = x * x;
        yy = y * y;
        float xtmp = xx - yy + cx;
        y = 2.0f * x * y + cy;
        x = xtmp;
        result++;
    }
    return result;
}

EntryPoint属性告诉杂交器生成一个 CUDA 内核。多维数组映射到内部类型,而Parallel2D.For映射到 2D 执行网格。给出几行样板代码,我们在 GPU 上透明地运行这段代码。

float[,] result = new float[N,N];
HybRunner runner = HybRunner.Cuda("Mandelbrot_CUDA.dll").SetDistrib(32, 32, 16, 16, 1, 0);
dynamic wrapper = runner.Wrap(new Program());
wrapper.Run(result);

描绘

我们使用 Nvidia Nsight Visual Studio Edition 探查器分析了这段代码。 C 代码在 CUDA 源代码视图中链接到 PTX ,如图 3 所示。

图 3 。在 CUDA 源代码视图中分析 Mandelbrot C #代码。

剖析器允许使用与 CUDA C ++代码相同的调查级别。

至于性能,这个例子达到了峰值计算 FLOP / s 的 72 。 5% ,这是用 CUDA C++ 手写的相同代码的 83% 。

图 4 : Profiler 输出显示了 GPU 上 Mandelbrot 代码的利用率和执行效率。它达到了与手写 CUDA C ++代码差不多的良好效率。

使用杂交器提供的扩展控制,可以从 C 代码中获得更好的性能。正如下面的代码所示,语法与 CUDA C ++非常类似。

[EntryPoint]
public static void Run(float[] result)
{
    for (int i = threadIdx.y + blockIdx.y * blockDim.y; i < N; i += blockDim.y * gridDim.y)
    {
        for (int j = threadIdx.x + blockIdx.x * blockDim.x; j < N; j += blockDim.x * gridDim.x)
        {
            float x = fromX + i * h;
            float y = fromY + j * h;
            result[i * N + j] = IterCount(x, y);
        }
    }
}

在这种情况下,生成的代码和手写的 CUDA C ++代码执行一致,达到峰值触发器的 87% ,如图 5 所示。

图 5 :分析手动优化的 Mandelbrot C 代码。

泛型与虚函数

Hybridizer 在设备功能上支持 泛型和虚函数调用 。现代编程语言的这些基本概念促进了代码模块化并提高了表达能力。然而, C 型的类型解析是在运行时完成的,这引入了一些性能上的惩罚。席。 NET- 泛型可以在保持灵活性的同时实现更高的性能: FixZER 将泛型映射到 C ++模板,这些模板在编译时被解决,允许函数内联和过程间优化。另一方面,虚拟函数中的方法被映射到另一个虚拟函数中。

模板实例化提示由两个属性 HybridTemplateConcept 和 HybridRegisterTemplate 提供给混合器(在设备代码中触发实际的模板实例化),另一个使用模板映射。基准依赖于一个公开下标运算符的公共接口 IMyArray :

[HybridTemplateConcept]
public interface IMyArray {

    double this[int index] { get; set; }
}

这些操作员必须与设备功能“混合”。为此,我们将Kernel属性放在实现类中。

public class MyArray : IMyArray {
    double[] _data;

    public MyArray(double[] data) {
        _data = data;
    }

    [Kernel]
    public double this[int index] {
        get { return _data[index]; }
        set { _data[index] = value; }
    }
}

虚函数调用

在第一个版本中,我们使用接口编写一个流算法,而不向编译器提供进一步的提示。

public class MyAlgorithmDispatch {
    IMyArray a, b;

    public MyAlgorithmDispatch(IMyArray a, IMyArray b)  {
        this.a = a;
        this.b = b;
    }

    [Kernel]
    public void Add(int n) {
        IMyArray a = this.a;
        IMyArray b = this.b;
        for (int k = threadIdx.x + blockDim.x * blockIdx.x;
             k < n;
             k += blockDim.x * gridDim.x) {
            a[k] += b[k];
        }
    }
}

因为我们在ab上调用下标运算符,所以在 MSIL 中有一个callvirt

IL_002a: ldloc.3
IL_002b: ldloc.s 4
IL_002d: callvirt instance float64 Mandelbrot.IMyArray::get_Item(int32)
IL_0032: ldloc.1
IL_0033: ldloc.2
IL_0034: callvirt instance float64 Mandelbrot.IMyArray::get_Item(int32)
IL_0039: add
IL_003a: callvirt instance void Mandelbrot.IMyArray::set_Item(int32, float64)

检查生成的二进制文件显示, Hybridizer 在虚拟函数表中生成了一个查找,如图 6 所示。

图 6 PTX 中的虚函数调用。

这个版本的算法消耗 32 个寄存器,达到 271 GB / s 的带宽,如图 7 所示。在相同的硬件上, CUDA 工具箱中的 bandwidthTest 示例达到 352Gb / s 。

图 7 由于虚拟函数调用,实现的带宽较低。

虚函数表导致更大的寄存器压力,并阻止内联。

一般呼叫

我们用泛型编写了第二个版本,要求杂交子生成模板代码。

[HybridRegisterTemplate(Specialize = typeof(MyAlgorithm))]
public class MyAlgorithm where T : IMyArray
{
    T a, b;

    [Kernel]
    public void Add(int n)
    {
            T a = this.a;
            T b = this.b;
            for (int k = threadIdx.x + blockDim.x * blockIdx.x;
                 k < n;
                 k += blockDim.x * gridDim.x)
               a[k] += b[k];
            }
    }

    public MyAlgorithm(T a, T b)
    {
            this.a = a;
            this.b = b;
    }
}

使用 RegisterTemplate 属性, Hybridizer 生成适当的模板实例。然后优化器内联函数调用,如图 8 所示。

图 8 使用泛型参数生成内联函数调用,而不是虚拟函数表查找。

泛型参数的性能要好得多,达到 339gb / s ,性能提高了 25% (图 9 ),比 bandwidthTest 提高了 96% 。

图 9 由于函数内联,泛型实现了更高的带宽。

开始使用杂交剂

Hybridizer 支持多种 C 特性,允许代码分解和表达能力。 Visual Studio 与 Nsight (调试器和探查器)的集成为您提供了一个安全高效的开发环境。 Hybridizer 即使在非常复杂、高度定制的代码上也能获得出色的 GPU 性能。

关于作者

Florent Duguet 是 Altimesh 的创始人, Altimesh 是一家法国软件工程公司,专门从事自动代码转换和多核和多核代码优化。他学习数学、物理和计算机科学,并于 2005 年获得计算机图形学博士学位。作为 GPU 计算领域的早期采用者, Florent 自 2007 年初开始在各种环境中实施 CUDA 解决方案,如定量金融、石油和天然气以及图像处理,同时致力于 Hybridizer 以实现代码转换的自动化。

R é gis 是 Altimesh 的研究工程师。他于 2010 年毕业于 Ecole Polytechnique ,学习纯数学和应用数学,如拓扑学和计算流体力学。瑞吉斯在加入 Altimesh 之前曾在微软做过三年的工程师。 Regis 专注于使 LLVM-IR 成为杂交剂和杂交剂要素开发的输入。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • cpu
    cpu
    +关注

    关注

    68

    文章

    10873

    浏览量

    212096
  • gpu
    gpu
    +关注

    关注

    28

    文章

    4744

    浏览量

    129019
  • 虚拟机
    +关注

    关注

    1

    文章

    918

    浏览量

    28257
收藏 人收藏

    评论

    相关推荐

    Triton编译器GPU编程的结合应用

    Triton编译器简介 Triton编译器是一种针对并行计算优化的编译器,它能够自动将高级语言代码转换为针对特定硬件优化的低级代码。Triton编译
    的头像 发表于 12-25 09:13 241次阅读

    Triton编译器如何提升编程效率

    现代软件开发中,编译器扮演着至关重要的角色。它们不仅将高级语言代码转换为机器可执行的代码,还通过各种优化技术提升程序的性能。Triton 编译器作为一种先进的
    的头像 发表于 12-25 09:12 230次阅读

    Triton编译器高性能计算中的应用

    先进的编译技术,为高性能计算提供了强大的支持。 Triton编译器简介 Triton编译器是一种开源的编译器框架,旨在为异构计算环境提供高效的编译
    的头像 发表于 12-25 09:11 244次阅读

    Triton编译器的优化技巧

    (Instruction Selection) Triton 编译器指令选择阶段采用了先进的算法来生成针对特定硬件架构优化的指令。这一阶段的目标是将高级中间表示(IR)转换为低级机器代码,同时尽可能地利用硬件
    的头像 发表于 12-25 09:09 232次阅读

    Triton编译器的优势与劣势分析

    据流分析技术,能够自动识别并优化深度学习模型中的计算瓶颈,从而提高模型的整体性能。 它支持多种硬件平台的优化,包括CPU、GPU、FPGA等,为深度学习模型的部署提供了更广泛的选择。 灵活可扩展 : Triton编译器采用了模块化的设计思想,开发者可以根据需要自定
    的头像 发表于 12-25 09:07 259次阅读

    Triton编译器机器学习中的应用

    多种深度学习框架,如TensorFlow、PyTorch、ONNX等,使得开发者能够轻松地将不同框架下训练的模型部署到GPU。 2. Triton编译器的工作原理 Triton编译器
    的头像 发表于 12-24 18:13 395次阅读

    Triton编译器支持的编程语言

    Triton编译器支持的编程语言主要包括以下几种: 一、主要编程语言 Python :Triton编译器通过Python接口提供了对Triton语言和编译器的访问,使得用户可以Pyt
    的头像 发表于 12-24 17:33 373次阅读

    Triton编译器与其他编译器的比较

    GPU编程框架,使开发者能够编写出接近手工优化的高性能GPU内核。 其他编译器 (如GCC、Clang、MSVC等): 定位:通用编译器,支持多种编程语言,广泛应用于各种软件开发场景
    的头像 发表于 12-24 17:25 380次阅读

    Triton编译器功能介绍 Triton编译器使用教程

    。以下是 Triton 编译器的一些功能介绍和使用教程。 Triton 编译器功能介绍 多语言支持 :Triton 支持多种编程语言,使得开发者可以
    的头像 发表于 12-24 17:23 431次阅读

    HighTec C/C++编译器支持Andes晶心科技RISC-V IP

    汽车编译器解决方案领先供货商HighTec EDV-Systeme GmbH宣布其针对汽车市场的高度优化C/C++编译器支持Andes晶心科技的RISC-V IP。这项支持对汽车软件开
    的头像 发表于 12-12 16:26 257次阅读

    TMS320C6000优化C/C++编译器v8.3.x

    电子发烧友网站提供《TMS320C6000优化C/C++编译器v8.3.x.pdf》资料免费下载
    发表于 11-01 09:35 0次下载
    TMS320<b class='flag-5'>C</b>6000优化<b class='flag-5'>C</b>/<b class='flag-5'>C</b>++<b class='flag-5'>编译器</b>v8.3.x

    C7000优化C/C++编译器

    电子发烧友网站提供《C7000优化C/C++编译器.pdf》资料免费下载
    发表于 10-30 09:45 0次下载
    <b class='flag-5'>C</b>7000优化<b class='flag-5'>C</b>/<b class='flag-5'>C</b>++<b class='flag-5'>编译器</b>

    AI编译器技术剖析

    随着人工智能技术的飞速发展,AI编译器作为一种新兴的编译技术逐渐进入人们的视野。AI编译器不仅具备传统编译器功能,如将
    的头像 发表于 07-17 18:28 1661次阅读

    人工智能编译器与传统编译器的区别

    人工智能编译器(AI编译器)与传统编译器多个方面存在显著的差异。这些差异主要体现在设计目标、功能特性、优化策略、适用范围以及技术复杂性等方
    的头像 发表于 07-17 18:19 1949次阅读

    SEGGER编译器优化和安全技术介绍 支持最新CC++语言

    SEGGER编译器是专门为ARM和RISC-V微控制设计的优化C/C++编译器。它建立强大的
    的头像 发表于 06-04 15:31 1488次阅读
    SEGGER<b class='flag-5'>编译器</b>优化和安全技术介绍 支持最新<b class='flag-5'>C</b>和<b class='flag-5'>C</b>++语言