0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何构建一个电动汽车EV充电器

科技观察员 来源:fotherby 作者:fotherby 2022-04-28 16:35 次阅读

在这个项目中我构建了自己的7.2kWEV充电器并将其安装在Zappi外壳内。两个目标是简单和安全。本文记录了构建。我为它编写了Arduino软件,所有设计文件、软件和零件清单都可以在GitHub页面上找到。

pYYBAGJqUZGAAORWAAawvm7tbP0636.png

项目背景

在英国,由电工安装电动汽车充电器的费用约为900英镑。这促使开始想自己动手,在进一步研究该主题时,我发现了一个具有良好文档的开源充电器(EVSE)。这给了我建立自己的信心。

免责声明

我不是专业电工我了解了接地系统、PEN故障、RCD、电缆电流容量等。我认为我已经对自己进行了足够的教育,已经建立了一个足够安全的系统。但我的如下设计仅供参考。且为了确保安全,在我实际使用过程中,当我离开家时,我将不得不取下充电器。我敢肯定,有无数人会质疑我的这个项目,如果操作不当,构建您自己的可切换240V32A的户外充电器可能会很危险。尽管如此,我仍欢迎建设性的批评和讨论。

第1步:开始准备

电动汽车充电器使用一个简单的“引导”信号检测它们何时插入汽车,并告诉汽车允许从充电器汲取多少电流。他们根本不修改电源,他们只是通过一些继电器将其打开/关闭到汽车。除此之外,它们还包含RCD的功能。但老实说,仅此而已!

我设法买了一个二手Zappi充电器。它内部没有任何电子设备,但它给了我一个外壳、电缆和插头来使用。我付了120英镑,包括邮费。

我购买了5米长的6mm²SWA电缆,用于从我的消费单元连接到我想要的充电器位置。我在非RCD侧的消费单元中添加了一个50AMCB,并使用夹板和不锈钢螺钉布置SWA电缆。

SWA电缆通过室外防水密封套进入Zappi外壳。在连接到PCB之前,火线和零线一起通过电流互感器。

第2步:接地电流检测

最重要的安全机制之一是接地电流检测系统。汽车底盘通过充电插头通过地线接地。接地电源来自消费单元(我们有TN-CS电源)。

接地系统背后有很多理论。约翰·沃德有一些关于我看过的主题的指导性YouTube视频。他讨论了PEN故障等问题。如果您从事任何电气工作,值得花时间自学有关接地的知识。

虽然不太可能,但有可能发生故障,例如火线接触汽车底盘。也许它在车内某处松动并接触到底盘,或者湿连接器正在桥接通往底盘的路径。

无论哪种方式,火线都会向机箱提供电流,该电流将直接接地(在TN-CS电源中,接地线和中性线连接在消费单元上)。电流量将取决于故障电桥的电阻。(水不太可能让许多安培流动)。鉴于机箱接地良好,它的电压不应升高到足以对触摸它的人造成触电危险。

然而,这是应该检测和处理的故障情况。如果一些水将带电连接到机箱,则可能会流过几安培(不足以使充电器的50AMCB跳闸),但足以导致局部发热和进一步损坏。

所以我们需要测量流向地的电流(在正常操作中应该为零)。如果超过20mA,我们希望通过打开继电器来隔离汽车。RCD通常在5-30mA时跳闸的原因是几百毫秒的电流量不会对人体造成永久性伤害。这里有关于电伤的维基百科文章。

AC-1:难以察觉,AC-2:可察觉但没有肌肉反应,AC-3:具有可逆作用的肌肉收缩,AC-4:可能的不可逆作用,AC-4.1:高达5%的心室颤动概率,AC-4.2:5–50%的纤颤概率,AC-4.3:超过50%的纤颤概率

测量对地电流的方法很简单。我们使用电流互感器测量火线和零线的共模电流。所有电流都应该是差分的(从火线流出的所有电流都应该通过负载并通过中性线返回)。如果出现故障并且某些电流没有返回,则它必须接地。这是一个共模电流,我们想要测量它!

第2步:原理图部分

poYBAGJqUZ6AJdgUAAF5jyta5gs228.png

以下电子设备是必要的:

为arduino、运算放大器、继电器等生成直流电压

安装40A250VL&N继电器,将电源切换到充电插头

为飞行员生成+/-12V1kHzPWM信号

在Arduino的ADC之前放大和整流电流互感器的信号

第3步:电源

我使用了RAC10-15DK/277AC/DC电源模块。这会产生+/-15V的电压轨。可调正/负线性稳压器(LM317和LM337)产生+/-12V电压轨。我知道运算放大器的输出可能无法一直摆动到它们的电源轨,所以我希望通过使用可调电压调节器来获得一些灵活性。

稳压器需要大约5mA的最小负载来维持稳压。因此,R3和R17为它们提供了很小的负载。稳压器在接近其压差电压时运行令人不安。根据数据表,20mA负载下的压差在0℃时约为1.6V,这使我们能够在必要时将运算放大器电压提升至约13.4V。

由于目前芯片/库存短缺,我购买了一个Pro-Mini模块,该模块方便地容纳了一个带有5V稳压器的Atmega328PArduino。但请注意,这个板载稳压器的最大输入电压为10V,因此我使用4.3V齐纳二极管降低了稳压的12V,然后将其提供给Pro-Mini的RAW输入。

与汽车的所有通信都是通过一条以大地为参考的单线(称为导频信号)完成的。阅读此处和此处以了解有关此信号如何工作的说明。简而言之,根据汽车是否已连接/准备充电等,汽车会在导频信号上放置不同的电阻。这导致导频信号的电压发生变化。

LM358运算放大器从Arduino获取0-5VPWM信号并将其转换为+/-12V信号以形成导频。简单的。

我们使用分压器网络调节导频电压,然后将其馈入ADC通道进行测量。13.6V600W双向TVS可确保在引导线上不会出现异常电压。

继电器操作

我最初认为我应该在SMPS的2个电源轨之间分担负载。因此,一个继电器将由+ve导轨供电,另一个由-ve导轨供电。然而,这样做为设计增加了几个额外的部分,并略微增加了整体复杂性。为了简单起见,我让两个继电器都由+ve电源轨供电,这最终工作得非常好。

T9VV1K15-12S继电器规格报告的线圈保持电压仅为4.7V。这可以节省大量电力。从原理图中可以看出,我们通过1W47R电阻器(R13和R14)从+15V电源轨为100uF电容器充电。当继电器被激活时,它们最初但短暂地获得15V。但是稳态电压衰减到大约9V。我应该选择68R甚至100R的电阻,以节省更多电能。

BC337晶体管通过2.2K电阻获得约2mA的基极电流。这足以充分切换晶体管。

电流互感器

电流互感器类似于电压互感器。我们通过将火线和中性线通过铁氧体磁芯一次,使变压器初级接通1匝。在二级上,我们有很多转弯-100次转弯。因此,初级上的电流被感应到次级上,尽管其幅度与匝数比成正比。如果初级电流为20mA,匝数比为1:400,次级电流为50uA。

就像电压互感器不喜欢短路一样。电流互感器不喜欢开路。测量次级电流的最佳方法是使用跨阻放大器

U2是OP07低失调运算放大器。V+端子接地,在此配置中,输出将左右摆动,以始终使V-保持与V+相同的电压(即0V)。想象一下,如果电流互感器向U2的V端施加50uA电流。运算放大器会将其输出电压降至-5V,以便50uA完全通过R2拉出(V=IxR=50uAx100K)。因此,V-端子正好保持在0V。因此您可以在此配置中看到,来自变压器的电流在运算放大器的输出端被转换为电压。C1仅有助于降低高频增益并充当低通滤波器。如果跨阻放大器饱和,D1和D2会阻止任何超过约0.7V的电压偏移。

我们可能不需要OP07的低偏移特性。C2无论如何都会消除任何直流偏置。U3B被配置为用作进一步的放大级和精密整流器。所使用的4.3V齐纳二极管也将输出钳位到~4V最大值。R12和C3在进入ADC通道之前添加最后一个低通滤波器。

总而言之,来自接地故障电流互感器的交流电流被转换成电压、放大、整流、限制和滤波,然后再传递到ArduinoADC进行测量。这个电路对我来说很有效并且很有意义,所以我选择了它。但是您可能可以进一步简化它。

第4步:PCB设计

pYYBAGJqUaSANUISAAPNvCNUUkc779.png

我使用KiCad来设计PCB。我选择了KiCad,因为它是开源的,如果需要,您可以制作多层PCB。SnapEDA是导入零件PCB封装的关键。PCB设计没有太多可说的。我在高压走线周围保留了4毫米的间隙。

第5步:组装焊接

poYBAGJqUaqAYcLuAAYixZCMH1g930.png

poYBAGJqUbCAfkhDAAe5AeVFE_o163.png

我用从Mouser获得的零件焊接了PCB。我意识到我的设计中有一个运算放大器的引脚错了,所以你可以看到一个丑陋的小笨蛋来解决这个问题!我也没有意识到Pro-Mini的稳压器不能处理》10V,所以我在调整电源轨电压时烧坏了一个。幸运的是我买了一包3个Pro-Mini……我在这个错误之后添加了一个齐纳二极管来降低电压,然后再将其馈送到Pro-Mini。我已经在github上的原理图和PCB上更正了这些问题,并调用了PCBV2.0。

第6步:软件及测试

我不是软件专家。希望代码的注释足够好以使其有意义。在GitHub存储库中找到它。

电流互感器上有一个自检线圈。该软件通过将50Hz5mA方波通过5圈测试线圈来执行自检。这基本上模拟了25mA接地故障。我们计算检测到故障所需的时间。如果在100毫秒内检测到故障,则测试通过。

测试

出于兴趣,我在启动时测量了继电器线圈两端的电压。蓝色迹线是线圈电压,红色迹线是开关交流输出。启动继电器似乎需要大约5毫秒。接触在一起后明显反弹了一点。

同样,继电器的释放似乎需要大约10毫秒。

引导电压与它们应该的完全一样。SAE_J1772规范确实允许+12V的+/-0.5V和+9V、6V和3V电平的+/-1V,所以我们很舒服。

此跟踪显示检测到汽车时会发生什么。+12VDC导频被汽车的2.74K电阻下拉。中断200毫秒后,软件切换到“状态B”并启动1kHzPWM。

这是汽车充电时的飞行员。-12V至+6V。该软件正在测量低区和高区中心的电压。

测试接地故障检测电路很重要。我测试它在6mA时跳闸。这是一条显示当一个22K电阻通过240V带电接地产生11mA电流时跳闸速度的轨迹。检测时间为12ms(交流波形开始到蓝色波形的上升沿。因此,10ms的继电器释放时间将在22ms内切断电源。这在EV充电器国家规范范围内。

结论

我对最终结果很满意。虽然它没有LCD屏幕,但我的车会告诉我它的充电速度,并允许我配置充电时间等。我不需要任何智能功能。我有一个智能电表,所以我也知道我用了多少电。总花费大约200英镑。再加上几天的艰苦思考、焊接和编码。虽然过程中付出确实很多,但我认为很值得。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电动汽车
    +关注

    关注

    155

    文章

    11866

    浏览量

    229532
  • 充电器
    +关注

    关注

    100

    文章

    4051

    浏览量

    114443
  • Arduino
    +关注

    关注

    187

    文章

    6456

    浏览量

    186469
收藏 人收藏

    评论

    相关推荐

    电动汽车电池智能快速充电器的设计

    电动汽车电池智能快速充电器的设计本文介绍了电动汽车智能快速充电器的设计过程。该充电器基于Cy
    发表于 05-17 11:39

    [原创]电动汽车充电器

    我们有一台电动汽车充电器坏了,没有图纸,我看了下主要元件是由IGBT组成的,ZGD-25A型 修理部说没法修了,买个新的要3000多。我想自己修好他。我的基本功还是有的,肯请
    发表于 09-24 18:05

    那位师傅修过电动汽车充电器

    昨天接了电动汽车充电器4830,48伏30安的。故障:不充电。滤波电容端电压为328伏,初步判断是不起振,(双面板)看了
    发表于 08-01 00:54

    电动汽车充电器电路拓扑的设计考虑

    耦合充电变换器原理框图  如前所述,充电器设计中很重要的考虑是感应耦合器匝比的合理选取。为使设计标准化,按3种充电模式设计的感应耦合
    发表于 11-29 14:29

    电动汽车充电器电路拓扑的设计考虑

    耦合充电变换器原理框图  如前所述,充电器设计中很重要的考虑是感应耦合器匝比的合理选取。为使设计标准化,按3种充电模式设计的感应耦合
    发表于 12-05 16:10

    电动汽车充电器 WT6016C 智能高效充电器 电路图

    电动汽车充电器 WT6016C 智能高效充电器 电路图,谢谢
    发表于 12-21 12:08

    EV /HEV 纯电动和混合电动汽车充电器的设计

    EV /HEV 纯电动和混合电动汽车充电器的设计上海皇华信息科技设计背景1、汽车用化石能源石油资源的日益枯竭是不可逆转的趋势。2、化石能源使
    发表于 12-30 16:35

    现在电动汽车使用的充电器有哪些啊?

    电动汽车行业小白,努力求知中。。。。。。最近在查电动汽车充电器,发现百度上面知识比较查,求大神指点迷津!还有乘用车和特种车之类的
    发表于 11-24 16:49

    电动汽车快速充电怎么改善

    媲美。电动车获得成功的关键因素在于消费者的接受度。由于锂电池价格下降,各地区的短期法规支持,消费者预计电动汽车的价格会出现下降,因此并不担心价格问题。但是,他们更关心
    发表于 03-11 06:45

    消除有关电动汽车充电的11误解

    充电器可靠性较低随着新型电池技术的出现,汽车电池的电压可达到 800V 及以上。按照这个趋势发展,电动汽车充电器设计人员将面临
    发表于 11-03 07:45

    如何设计高效、强大、快速的电动汽车充电

    千瓦的功率。如今,150千瓦的充电站需要约30分钟才能为电动汽车充入足够的电量,并使其行驶约250公里。设计可以处理如此大功率的单功率处理单元需要采用难以控制的复合多级拓扑结构。在
    发表于 11-09 07:07

    电动汽车充电器电路拓扑的设计考虑

    电动汽车充电器电路拓扑的设计考虑 摘要:对电动汽车车载电池的充电器进行了讨论。根据SAE J?1773对感应耦合器设计标准的规定,
    发表于 07-11 13:54 1562次阅读
    <b class='flag-5'>电动汽车</b><b class='flag-5'>充电器</b>电路拓扑的设计考虑

    有关电动汽车充电的11不实传言

    消除有关电动汽车充电的 11 误解。 第 1 种不实传言:可以直接使用交流电源为电动汽车充电 是的,有直接使用交流电源为
    的头像 发表于 07-25 17:11 949次阅读
    有关<b class='flag-5'>电动汽车</b><b class='flag-5'>充电</b>的11<b class='flag-5'>个</b>不实传言

    电动汽车EV)壁挂式充电器

    电动汽车EV)壁挂式充电器解决方案,该方案适用于消费类和商用EV充电器,可为用户带来方便、快捷的充电
    发表于 01-03 23:48 658次阅读
    <b class='flag-5'>电动汽车</b>(<b class='flag-5'>EV</b>)壁挂式<b class='flag-5'>充电器</b>

    电动汽车EV)直流快速充电器挑战的选项

    目前正在开发的电动汽车EV) 直流快速充电器必须满足比当今已安装的充电器基础更苛刻的规格。这源于两市场压力:首先,为嵌入在最新
    的头像 发表于 10-25 16:18 1196次阅读
    <b class='flag-5'>电动汽车</b>(<b class='flag-5'>EV</b>)直流快速<b class='flag-5'>充电器</b>挑战的选项