0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何区分xenomai、linux系统调用/服务

Linux阅码场 来源:Linux阅码场 作者:Linux阅码场 2022-05-10 10:28 次阅读

一、如何区分xenomai、linux系统调用/服务

1. 引出问题

上一篇文章xenomai内核解析--双核系统调用(一)以X86处理器为例,分析了xenomai内核系统调用的流程,读了以后可能会觉得缺了点什么,你可能会有以下疑问:

  1. 系统中的两个内核都是POSIX接口实现系统调用,那么我们用POSIX接口写了一个应用程序,怎样知道它调用的内核,或者如何区分这个应用是cobalt内核的应用,而不是普通linux应用?

  2. 对于同一个POSIX接口应用程序,可能既需要xenomai内核提供服务(xenomai 系统调用),又需要调用linux内核提供服务(linux内核系统调用),或者既有libcobalt,又有glibc库,他们是如何实现和区分的?

    ade56f4e-cff5-11ec-bce3-dac502259ad0.png

2. 编译链接

对于问题1,答案是:由编译的链接过程决定,链接的库不同当然执行的也就不同,如果普通编译,则该应用编译后是一个普通linux运用。如果要编译为xenomai应用,则需要链接到xenomai库。但是我们应用程序调用的代码函数symbol完全一样,我们会有疑惑xenomai是如何狸猫换太子的?首先链接是通过符号表(symbol)来链接的,当然也就要从代码符号(symbol)入手,首先来看一个常用的编译xenomai 应用的makefile:

XENO_CONFIG := /usr/xenomai/bin/xeno-config
PROJPATH = .
CFLAGS := $(shell $(XENO_CONFIG)   --posix --alchemy --cflags)LDFLAGS := $(shell $(XENO_CONFIG)  --posix --alchemy --ldflags)INCFLAGS= -I$(PROJPATH)/include/

EXECUTABLE := rt-app
src = $(wildcard ./*.c)obj = $(patsubst %.c, %.o, $(src))
all: $(EXECUTABLE)
$(EXECUTABLE): $(obj)        $(CC) -g -o $@ $^  $(INCFLAGS) $(CFLAGS) $(LDFLAGS)
%.o:%.c        $(CC) -g -o $@ -c $<  $(INCFLAGS) $(CFLAGS) $(LDFLAGS)
.PHONY: cleanclean:        rm -f $(EXECUTABLE) $(obj)

其中最重要的就是编译时需要 xeno-config来生成gcc参数xeno-config在我们编译安装xenomai库后,默认放在 /usr/bin/xeno-config

$ /usr/bin/xeno-config --helpxeno-config --verbose        --core=cobalt        --version="3.1"        --cc="gcc"        --ccld="/usr/bin/wrap-link.sh gcc"        --arch="x86"        --prefix="/usr"        --library-dir="/usr/lib"Usage xeno-config OPTIONSOptions :        --help        --v,--verbose        --version        --cc        --ccld        --arch        --prefix        --[skin=]posix|vxworks|psos|alchemy|rtdm|smokey|cobalt        --auto-init|auto-init-solib|no-auto-init        --mode-check|no-mode-check        --cflags        --ldflags        --lib*-dir|libdir|user-libdir        --core        --info        --compat

例如编译一个POSIX接口的实时应用,参数 --cflags表示编译,指定接口(skin) --posix,就能得到编译该程序的gcc参数了,看着没什么特别的:

$ /usr/bin/xeno-config --posix --cflags-I/usr/include/xenomai/cobalt-I/usr/include/xenomai-D_GNU_SOURCE-D_REENTRANT-fasynchronous-unwind-tables-D__COBALT__-D__COBALT_WRAP__

再看链接--ldflags表示链接,如下得到链接参数:

$ /usr/bin/xeno-config --ldflags --posix-Wl,--no-as-needed-Wl,@/usr/lib/cobalt.wrappers-Wl,@/usr/lib/modechk.wrappers/usr/lib/xenomai/bootstrap.o-Wl,--wrap=main-Wl,--dynamic-list=/usr/lib/dynlist.ld-L/usr/lib-lcobalt-lmodechk-lpthread-lrt

这一看就多出不少东西,重点就在这 cobalt.wrappersmodechk.wrappers,两个文件的内容如下:

...--wrap open--wrap open64--wrap socket--wrap close--wrap ioctl--wrap read....--wrap recv--wrap send--wrap getsockopt--wrap setsockop...

里面是一些posix系统调用,前面的 --wrap是什么作用?这是执行链接过程的程序 ld的一个参数,通过 man ld可以找到该参数的说明:

--wrap symbol           Use a wrapper function for symbol.  Any undefined reference to symbol will be resolved to "__wrap_symbol".  Any undefined reference to "__real_symbol" will be resolved to symbol.
           This can be used to provide a wrapper for a system function.  The wrapper function should be called "__wrap_symbol".  If it wishes to call the system function, it should call "__real_symbol".
           Here is a trivial example:
                   void *                   __wrap_malloc (size_t c)                   {                     printf ("malloc called with %zu
", c);                     return __real_malloc (c);                   }
           If you link other code with this file using --wrap malloc, then all calls to "malloc" will call the function "__wrap_malloc" instead.  The call to "__real_malloc" in "__wrap_malloc" will call the real "malloc"           function.
           You may wish to provide a "__real_malloc" function as well, so that links without the --wrap option will succeed.  If you do this, you should not put the definition of "__real_malloc" in the same file as           "__wrap_malloc"; if you do, the assembler may resolve the call before the linker has a chance to wrap it to "malloc".

简单来说就是:任何 对 symbol未定义 的 引用 (undefined reference) 将 解析为 __wrap_symbol. 任何 对 __real_symbol未定义 的 引用 将 解析为 symbol。意思就是我们代码里使用到且是参数 --wrap指定的符号 symbol(即文件里的内容),链接的时候就认为它是 __wrap_symbol,比如我们代码用到了 open()在链接的时候是与库中的 __wrap_open()链接的, __wrap_open就是在xenomai 实时库libcobalt中实现,现在我们明白我们的posix函数如何和xenomai对接上了。

对于 xeno-config的其他更多参数可通过xenomai Manual Page了解。

这样就将POSIX接口源码编译成一个xenomai可执行程序了。

我们还有另一个问题,既然链接到了libcobalt,但我们是要Linux来提供服务,又是怎么让Linux来提供服务的呢?看libcobalt具体实现可以知道答案。

3. libcobalt中的实现

下面来看问题2,既然我们已将一个接口链接到实时内核库libcobalt,当然由实时内核库libcobalt来区分该发起linux内核调用还是xenomai内核系统。与上一篇文章一样,以一个POSIX接口 pthread_cretate()来解析libcobalt中的实现。

xenomai线程的创建流程比较复杂,需要先让linux创建普通线程,然后再由xenomai创建该线程的shadow 线程,即xenomai调度的实时线程,很符合我们上面的提出的问题2。说到这先简答介绍一下xenomai实时线程的创建,详细的创建流程后面会写专门写一篇文章解析,敬请期待。

pthread_cretate()不是一个系统调用,由NPTL(Native POSIX Threads Library)实现(NPTL是Linux 线程实现的现代版,由UlrichDrepper 和Ingo Molnar 开发,以取代LinuxThreads),NPTL负责一个用户线程的用户空间栈创建、内存分配、初始化等工作,与linux内核配合完成线程的创建。每一线程映射一个单独的内核调度实体(KSE,Kernel Scheduling Entity)。内核分别对每个线程做调度处理。线程同步操作通过内核系统调用实现。

xenomai coblat作为实时任务的调度器,每个实时线程需要对应到 coblat调度实体,如果要创建实时线程就需要像linux那样NPTL与linux 内核深度结合,那么coblat与libcoblat实现将会变得很复杂。在这里,xenomai使用了一种方式,由NPTL方式去完成实时线程实体的创建(linux部分),在普通线程的基础上附加一些属性,对应到xenomai cobalt内核实体时能被实时内核cobalt调度。

所以libcoblat库中的实时线程创建函数 pthread_cretate最后还是需要使用 glibc的 pthread_cretate函数,xenomai只是去扩展glibc pthread_cretate创建的线程,使这个线程可以在实时内核cobalt调度。

pthread_cretate()在libcobalt中pthread.h文件中定义如下:

COBALT_DECL(int, pthread_create(pthread_t *ptid_r,        const pthread_attr_t *attr,        void *(*start) (void *),        void *arg));

COBALT_DECL宏在 wrappers.h中如下,展开上面宏,会为 pthread_create()生成三个类型函数:

#define __WRAP(call)    __wrap_ ## call#define __STD(call)    __real_ ## call#define __COBALT(call)    __cobalt_ ## call#define __RT(call)    __COBALT(call)#define COBALT_DECL(T, P)    __typeof__(T) __RT(P);    __typeof__(T) __STD(P);   __typeof__(T) __WRAP(P)  int __cobalt_pthread_create(pthread_t *ptid_r,        const pthread_attr_t *attr,        void *(*start) (void *),        void *arg);int __wrap_pthread_create(pthread_t *ptid_r,        const pthread_attr_t *attr,        void *(*start) (void *),        void *arg);int __real_pthread_create(pthread_t *ptid_r,        const pthread_attr_t *attr,        void *(*start) (void *),        void *arg);

声明 pthread_create()函数的这三个宏意思为:

__RT(P):__cobalt_pthread_create明确表示Cobalt实现的POSIX函数

__COBALT(P):与__RT()等效。

__STD(P):__real_pthread_create表示这是原始的POSIX函数(Linux glibc实现),cobalt库内部通过它来表示调用原始的POSIX函数(glibc NPTL).

__WRAP(P)__wrap_pthread_create__cobalt_pthread_create的弱别名,如果编译器编译时知道有该函数其它的实现,该函数就会被覆盖。

主要关注前面两个,对于最后一个宏,如果外部库想覆盖已有的函数,应提供其自己的 __wrap_pthread_create()实现,来覆盖Cobalt实现的 pthread_create()版本。原始的Cobalt实现仍可以引用为 __COBALT(pthread_create)。由宏COBALT_IMPL来定义:

#define COBALT_IMPL(T, I, A)                \__typeof__(T) __wrap_ ## I A __attribute__((alias("__cobalt_" __stringify(I)), weak));  \__typeof__(T) __cobalt_ ## I A

最后cobalt库函数 pthread_create实现主体为

COBALT_IMPL(int, pthread_create, (pthread_t *ptid_r,          const pthread_attr_t *attr,          void *(*start) (void *), void *arg)){  pthread_attr_ex_t attr_ex;  ......  return pthread_create_ex(ptid_r, &attr_ex, start, arg);}

COBALT_IMPL定义了 __cobalt_pthread_create函数及该函数的一个弱别名 __wrap_pthread_create,调用这两个函数执行的是同一个函数体。

对于 NPTL函数 pthread_create,在Cobalt库里使用 __STD()修饰,展开后即 __real_pthread_create(),其实只是NPTL pthread_create()的封装, __real_pthread_create()会直接调用 NPTL pthread_create,在libcobaltwrappers.c实现如下:

/* pthread */__weakint __real_pthread_create(pthread_t *ptid_r,        const pthread_attr_t * attr,        void *(*start) (void *), void *arg){  return pthread_create(ptid_r, attr, start, arg);}

它调用的就是glibc中的 pthread_create函数.同样我们接着 __cobalt_pthread_create()看哪里调用的.

int pthread_create_ex(pthread_t *ptid_r,          const pthread_attr_ex_t *attr_ex,          void *(*start) (void *), void *arg){  ......  __STD(sem_init(&iargs.sync, 0, 0));
  ret = __STD(pthread_create(&lptid, &attr, cobalt_thread_trampoline, &iargs));/*__STD 调用标准库的函数*/  if (ret) {    __STD(sem_destroy(&iargs.sync));    return ret;  }
  __STD(clock_gettime(CLOCK_REALTIME, &timeout));    .....}

下面再看另一个例子,实时任务在代码中使用了linux的网络套接字(xenomai任务也是一个linux任务,也可以使用linux来提供服务,只不过会影响实时性),有以下代码,:

....    int sockfd,ret;                                                struct sockaddr_in addr;                               sockfd = socket(PF_INET, SOCK_STREAM, 0);            .....    bind(sockfd, (struct sockaddr *)&my_addr,sizeof(struct sockaddr_in));        ....

该代码编译时链接到了libcobalt,socket()函数即libcobalt中的 __cobalt_socket(),其定义在xenomai- 3.x.xlibcobalt tdm.c,如下:

COBALT_IMPL(int, socket, (int protocol_family, int socket_type, int protocol)){  int s;  s = XENOMAI_SYSCALL3(sc_cobalt_socket, protocol_family,           socket_type, protocol);  if (s < 0) {    s = __STD(socket(protocol_family, socket_type, protocol));  }  return s;}

可以看到,libcobalt中的函数会先尝试调用实时内核cobalt的系统调用, 当cobalt系统调用不成功的时候才继续尝试通过 __STD()宏来调用linux系统调用(cobalt内核根据socket协议类型参数 PF_INET, SOCK_STREAM判断),这样就有效的分清了是linux系统调用还是xenomai系统调用,这也是所有libcobalt实现的posix都链接到libobalt库的原因。

一般情况下,可以直接在代码中使用 __STD()宏指明我们调用的linux内核的服务,修改如下:

....    int sockfd,ret;                                                struct sockaddr_in addr;                               sockfd = __STD(socket(PF_INET, SOCK_STREAM, 0));            .....     __STD(bind(sockfd, (struct sockaddr *)&my_addr,sizeof(struct sockaddr_in)));....

现在一切都明了了,一个函数编译时通过参数链接到xenomai库后,通过 __STD()宏来表示使用linux接口。

4. 总结

  • 在实时程序或实时库libcobalt中,通过__STD()宏来表示使用linux接口。

  • 对于一个未指明的接口,libcobalt会先尝试发起xenomai系统调用,不成功会接着尝试linux内核系统调用或者调用glibc函数。

  • 如果我们向libcobalt库中新添加一个libcobalt库中没有的自定义POSIX函数/系统调用时,一定要在内部先尝试发起xenomai系统调用,不成功时接着尝试linux内核系统调用,此外还必须将该接口添加到文件xenomailibcobaltcobalt.wrappers中,这样才能正确链接,否则编译后的应用还是原来的。

二、 如何为xenomai添加一个系统调用

1. 添加系统调用

有的时候我们需要给系统添加一个特殊功能的系统调用,比如我们在对xenomai做benchmark测试的时候,需要测试每个系统服务操作系统需要消耗多长时间,比如测量获取信号量操作系统的耗时。我们知道中断优先级最高,会强占前台的操作系统和应用,为了更准确的测量获取信号量时操作系统的耗时,这里需要将这种情况下的结果丢弃,我们就需要一个获取xenomai中断次数的系统调用。

假设该系统没有任何实时驱动运行,且设置了xenomai.supportedcpus和linux irqaffinity,supportedcpus启用tickless,下面给xenomai添加一个系统调用 get_timer_hits(),用于获取应用程序运行CPU的定时器中断产生的次数(类似于VxWorks里的tickGet(),VxWorks是采用周期tick的方式来驱动系统运作,tickGet()获取的也就是tick定时器中断的次数)。以该系统调用来举例如何为xenomai添加一个实时系统调用。

在前两篇文中说到,xenomai每个系统的系统系统调用号在 cobaltuapisyscall.h中:

#definesc_cobalt_bind0#definesc_cobalt_thread_create1#definesc_cobalt_thread_getpid2......#definesc_cobalt_extend96

在此添加 sc_cobalt_get_timer_hits的系统,为了避免与xenomai系统调用冲突(xenomai官方添加的系统调用号从小到大),那我们就从最后一个系统调用添加,即127号系统调用,如下。

#definesc_cobalt_bind0#definesc_cobalt_thread_create1#definesc_cobalt_thread_getpid2......#definesc_cobalt_extend96#definesc_cobalt_ftrace_puts97#definesc_cobalt_recvmmsg98#definesc_cobalt_sendmmsg99#definesc_cobalt_clock_adjtime100#definesc_cobalt_thread_setschedprio101#definesc_cobalt_get_timer_hits127#define__NR_COBALT_SYSCALLS128/*Powerof2*/

先确定一下我们这个函数的API形式,由于是一个非标准的形式,这里表示如下:

int get_timer_hits(unsigned long *u_tick);

参数为保存hits的变量地址;

返回值:成功0;出错 <0;

系统调用的头文件,然后添加一个系统调用的声明,觉得它和clock相关,那就放在 kernelxenomaiposixclock.h中吧。

#includeCOBALT_SYSCALL_DECL(get_timer_hits,(unsignedlong__user*u_tick));

然后是该函数的内核实现,放在 /kernelxenomaiposixclock.c,如下:

COBALT_SYSCALL(get_timer_hits,primary,(unsignedlong__user*u_tick)){structxnthread*thread;  unsignedlongtick; intcpu; intret=0;    unsignedintirq;thread=xnthread_current();if(thread==NULL)    return-EPERM;/*得到当前任务CPU号*/cpu=xnsched_cpu(thread->sched);irq=per_cpu(ipipe_percpu.hrtimer_irq,cpu);/*读取该CPU中断计数*/tick=__ipipe_cpudata_irq_hits(&xnsched_realtime_domain,cpu,irq); if(cobalt_copy_to_user(u_tick,&tick,sizeof(tick))) return-EFAULT;returnret;}

需要注意的是该系统调用的权限,这里使用 primary,表示只有cobalt上下文(实时线程)才能调用。

修改完成后重新编译内核并安装。

2.Cobalt库添加接口

在前两篇文中说到,xenomai系统调用由libcobalt发起,所以修改应用库来添加该函数接口,添加声明 includecobalt ime.h

COBALT_DECL(int,get_timer_hits(unsignedlongtick));

xenomai3.x.xlibcobaltclock.c添加该接口定义:

COBALT_IMPL(int,get_timer_hits,(unsignedlong*tick)){intret;ret=-XENOMAI_SYSCALL1(sc_cobalt_get_tick,tick);returnret;}

因为该系统调用和posix接口没有符号重名,不需要修改wrappers文件,完成上述步骤后重新编译并安装xenomai库

3. 应用使用

由于我们添加 get_timer_hits()系统调用时,指定了系统调用的权限为primary,这里创建一个实时任务,使用宏 __RT()指定链接到libcobalt库。

#include #include #include #include #include #include #include #include #include #include #include #include #include 
#define PRIO 50
void test(void *cookie){  unsigned long tick;  int ret;  ret  = __RT(get_timer_hits(&tick));  if (ret){    fprintf(stderr,      "%s: failed to get_tick,%s
",      __func__,strerror(-ret));    return ret;  }      fprintf(stdout,"timer_hits:%ld
",tick);    /*....*/  return 0;}
int main(int argc, char *const *argv){    struct sigaction sa __attribute__((unused));  int sig, cpu = 0;  char sem_name[16];  sigset_t mask;  RT_TASK task;    int ret;        sigemptyset(&mask);  sigaddset(&mask, SIGINT);  sigaddset(&mask, SIGTERM);  sigaddset(&mask, SIGHUP);  sigaddset(&mask, SIGALRM);  pthread_sigmask(SIG_BLOCK, &mask, NULL);  setlinebuf(stdout);      ret = rt_task_spawn(&task, "test_task", 0, PRIO,             T_JOINABLE, test, NULL);  if (ret){    fprintf(stderr,      "%s: failed to create task,%s
",      __func__,strerror(-ret));    return ret;  }        __STD(sigwait(&mask, &sig));    rt_task_join(&task);    rt_task_delete(&task);        return 0;}

编译Makefile:

XENO_CONFIG := /usr/xenomai/bin/xeno-config
PROJPATH = .
CFLAGS := $(shell $(XENO_CONFIG)   --posix --alchemy --cflags)LDFLAGS := $(shell $(XENO_CONFIG)  --posix --alchemy --ldflags)INCFLAGS= -I$(PROJPATH)/include/

EXECUTABLE := get-timer-hits
src = $(wildcard ./*.c)obj = $(patsubst %.c, %.o, $(src))
all: $(EXECUTABLE)
$(EXECUTABLE): $(obj)        $(CC) -g -o $@ $^  $(INCFLAGS) $(CFLAGS) $(LDFLAGS)
%.o:%.c        $(CC) -g -o $@ -c $<  $(INCFLAGS) $(CFLAGS) $(LDFLAGS)
.PHONY: cleanclean:        rm -f $(EXECUTABLE) $(obj)

运行结果:

$./get-timer-hitstimer_hits:3

可以看到,虽然系统已经启动十几分钟了,但一直没有运行xenomai应用,xenomai tick相关中断才产生了3次,这就是tickless,后面会出xenomai调度及时间子系统和xenomai benchmark相关文章,敬请关注。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • Linux
    +关注

    关注

    87

    文章

    11219

    浏览量

    208872
  • Xenomai
    +关注

    关注

    0

    文章

    10

    浏览量

    7973

原文标题:xenomai内核解析--双核系统调用(二)--应用如何区分xenomai/linux系统调用或服务

文章出处:【微信号:LinuxDev,微信公众号:Linux阅码场】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    迅为瑞芯微RK3568开发板/核心板《iTOP-3568开发板实时系统使用手册》

    编译 3.1 翼辉系统编译 3.2 Preemption 系统/ Xenomai系统编译 3.2.1 获取Linux源码包 3.2.2 SD
    发表于 10-31 09:53

    如何优化Linux服务器的性能

    优化Linux服务器的性能是一个综合性的任务,涉及硬件、软件、配置、监控等多个方面。以下是一个详细的指南,旨在帮助系统管理员和运维人员提升Linux
    的头像 发表于 09-29 16:50 230次阅读

    迅为RK3568开发板/核心板助力实时系统

    编译 3.1 翼辉系统编译 3.2 Preemption 系统/ Xenomai系统编译 3.2.1 获取Linux源码包 3.2.2 SD
    发表于 09-26 11:29

    Linux服务器性能查看方法

    Linux服务器性能查看是系统管理员和开发人员在日常工作中经常需要进行的任务,以确保系统稳定运行并优化资源使用。以下将详细介绍多种Linux
    的头像 发表于 09-02 11:15 881次阅读

    中断服务调用FreeRTOS系统函数,是否必须用FromISR结尾?

    中断服务调用FreeRTOS的系统函数,必须用FromISR结尾的,那么,是否不管第几级调用,只要是还在中断服务中,就必须用FromISR
    发表于 04-29 08:29

    linux服务器和windows服务

    Linux服务器和Windows服务器是目前应用最广泛的两种服务器操作系统。两者各有优劣,也适用于不同的应用场景。本文将 对
    发表于 02-22 15:46

    linux用gdb调试遇到函数调用怎么办?

    linux用gdb调试遇到函数调用怎么办? 在Linux上使用GDB调试时,遇到函数调用是一个常见的情况。函数调用可能涉及到多个函数、多个文
    的头像 发表于 01-31 10:33 677次阅读

    Linux内核中信号相关的系统调用

    正如我们所知,运行在用户态下的程序可以发送和接收信号。这意味着必须定义一组系统调用来允许这类操作。不幸的是,由于历史原因,有些系统调用可能功能相同。 因此,其中一些
    的头像 发表于 01-20 09:34 645次阅读

    服务器数据恢复-断电导致linux操作系统服务器数据丢失的数据恢复案例

      某品牌R730服务器+MD3200系列存储,linux操作系统
    的头像 发表于 12-21 14:55 557次阅读

    linux内核系统调用之参数传递

    与普通函数一样,系统调用通常需要一些输入/输出参数,这些参数可能包括实际值(即数字)、用户模式进程地址空间中的变量地址,甚至包括指向用户模式函数指针的数据结构的地址(参见第11章“信号相关的系统
    的头像 发表于 12-20 09:32 1420次阅读

    linux服务器端口怎么开放?

    Linux系统上,开放端口通常是通过配置防火墙(firewall)来完成的。不同的Linux发行版可能使用不同的防火墙工具,以下是几个常见的Linux防火墙工具: 一、iptable
    的头像 发表于 12-19 17:21 2378次阅读

    Linux系统调用脚本的常见方法

    linux系统中有多种方法可以在系统启动后调用脚本,接下来介绍几种常见的方法
    的头像 发表于 12-13 18:16 991次阅读

    如何查看Linux systemd下正在运行的服务

    Linux 系统提供了各种系统服务(如 syslog、cron 等)和网络服务(如 DNS、SSH 等)。
    的头像 发表于 12-04 14:47 1966次阅读
    如何查看<b class='flag-5'>Linux</b> systemd下正在运行的<b class='flag-5'>服务</b>

    怎么区分分布式服务器和集群式服务器?

      如何区分分布式服务器和集群服务器?许多朋友在选择服务器时不知道分布式服务器和集群服务器的区别
    的头像 发表于 11-29 15:20 677次阅读

    linux系统的用途

    的用途和在不同领域的应用。 服务器操作系统Linux是最常用的服务器操作系统之一。它被广泛应用于Web
    的头像 发表于 11-23 11:12 981次阅读