0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

LPC553x运算放大器的工作原理及典型运用

恩智浦MCU加油站 来源:恩智浦MCU加油站 作者:恩智浦MCU加油站 2022-05-12 15:42 次阅读

恩智浦最近新推出一款新产品LPC553x系列,见《LPC553x系列MCU正式量产!为电机控制提供更强算力,更先进模拟特性》,该系列配置了一些全新的模拟功能模块,其中就包括了运算放大器(OPAMP),今天就先来看看这个新模块,有什么过人之处。

由于在用户手册中对该模块的介绍比较简单,在这里就对该功能模块作一个更加详细一点的介绍,使得客户在浏览本文后,能够加深对LPC553x运算放大器的理解,尤其是如何将LPC553x运算放大器的配置,和实际中经常使用的一些典型的运放电路联系起来,从而在实际应用中能够快速上手。

OPAMP原理介绍

OPAMP是一个包含多级放大器电路的电子集成电路,其输入级是一个差分放大器电路,具有输入电阻高、抑制零点漂移的特点。

为了简化分析,分析基于如图1所示理想的OPAMP,一个理想的OPAMP具有如下特点。

输入电流 IB = 0

输入偏置电压 VE = 0

输入阻抗 ZIN = ∞

输出阻抗 ZOUT = 0

放大倍数 a = ∞

af7e8e50-d1b0-11ec-bce3-dac502259ad0.png

图1. 一个理想的OPAMP

运算放大器的几种典型运用

◄ 同相比例放大电路 ►

同相比例放大电路连接如图2所示。

输入电压VIN连接到放大器同相输入端,根据理想的OPAMP特性:输入电流IB = 0,输入偏置电压VE = 0,可得输入电压和输出电压关系如下:

af9aed16-d1b0-11ec-bce3-dac502259ad0.png

则:

afb3adba-d1b0-11ec-bce3-dac502259ad0.png

输出电压为输入电压放大而成的同相电压。该电路的输入阻抗为无穷大。

afcce8f2-d1b0-11ec-bce3-dac502259ad0.png

图2. 同相比例放大电路

◄ 电压跟随器 ►

电压跟随器电路连接如图3所示。

在同相比例放大电路中,如果令R2 = 0,并且移除R1, 可得输出电压和输入电压关系如下:

VOUT = VIN

该电路使用OPAMP作为电压跟随缓冲器,在具体应用中可实现针对输入信号的阻抗匹配。

afdd40bc-d1b0-11ec-bce3-dac502259ad0.png

图3. 电压跟随器

◄ 反相比例放大电路 ►

反相比例放大电路连接如图4所示。

反相比例放大电路输入电压VIN连接到放大器反相输入端,根据理想的OPAMP特性:输入电流IB = 0,输入偏置电压VE = 0,可得输入电压和输出电压关系如下:

aff67dca-d1b0-11ec-bce3-dac502259ad0.png

则:

b0135404-d1b0-11ec-bce3-dac502259ad0.png

输出电压为输入电压放大而成的反相电压。

b03b2f74-d1b0-11ec-bce3-dac502259ad0.png

图4. 反相比例放大电路

◄ 差分放大电路 ►

差分放大电路连接如图5所示。

差分放大电路放大了输入电压之间的电压差。根据理想的OPAMP特性:输入电流IB = 0,输入偏置电压VE = 0,可得到如下等式:

b05a7bc2-d1b0-11ec-bce3-dac502259ad0.png

则:

b0814cca-d1b0-11ec-bce3-dac502259ad0.png

b09376c0-d1b0-11ec-bce3-dac502259ad0.png

则:

b0cb7aa2-d1b0-11ec-bce3-dac502259ad0.png

根据 V+ = V-, 及等式 (1)(2) 可得:

b0f396e0-d1b0-11ec-bce3-dac502259ad0.png

如果令 R1 = R3, R2 = R4, 则:

b11532aa-d1b0-11ec-bce3-dac502259ad0.png

在该电路中,差分信号(VINP – VINN)按放大器增益倍数得到放大,电路实现了差分放大功能。放大输入信号的差分部分,而将输入信号的公共部分滤除。

由于差分放大电路具有滤除共模干扰的特性,该电路可用于滤除信号的直流分量以及共模噪声。

b13359ec-d1b0-11ec-bce3-dac502259ad0.png

图5. 差分放大电路

◄ 带偏置的差分放大电路 ►

带偏置的差分放大电路连接如图6所示。

在差分放大电路中,如果R4不是接地,而是接入偏置电压VPREF,则该电路变为带偏置的差分放大电路。根据理想的OPAMP特性:输入电流IB = 0,输入偏置电压VE = 0,可得到如下等式:

b15858fa-d1b0-11ec-bce3-dac502259ad0.png

则:

b16a9812-d1b0-11ec-bce3-dac502259ad0.png

b17e111c-d1b0-11ec-bce3-dac502259ad0.png

则:

b1a41de4-d1b0-11ec-bce3-dac502259ad0.png

根据 V+ = V-, 以及等式 (3)(4) 可得:

b1bc85f0-d1b0-11ec-bce3-dac502259ad0.png

b1ee48b0-d1b0-11ec-bce3-dac502259ad0.png

图6. 带偏置的差分放大电路

LPC553x运放模块性能介绍

LPC553x OPAMP模块具有如下功能:

3个OPAMP模块,支持可编程增益放大器(PGA)

通过配置寄存器来选择不同的增益,以实现可选择的同相比例放大和反相比例放大

模块适用于SARADC之前的信号处理阶段

LPC553x OPAMP模块具有如下特性:

直流开环电压增益110db

转换速率2V/us (低噪声模式),5.5V/us(高速模式)

统一增益带宽3MHz(低噪声模式),15MHz(高速模式)

满幅输入/输出(0 - VDDA)

PGA反相可编程增益:-1X,-2X,-4X,-8X,-16X,-33X,-64X;正相可编程增益:1X,2X,4X,8X,16X,33X,64X

LPC553x OPAMP模块工作模式:

独立(缓冲器)模式

可编程增益放大器(PGA)模式

独立(缓冲器)模式:

OPAMP功能框图如图7所示:

将寄存器OPAMP_CTR [26-24]位“NGAIN”设为“000 – Buffer”,可使得OPAMP工作在缓冲器模式。

在这种模式下,OPAMP放大电路独立工作,与内部的电阻矩阵没有连接,只将OPAMPx_INP,OPAMPx_INN,OPAMPx_OUT这三个管脚引出供用户使用,用户可以在这些管脚上连接外部电路来实现所需的功能。

PGA模式:

将寄存器OPAMP_CTR [26-24]位“NGAIN”设为除“000 – Buffer”外的其它值。[22-20]位“PGAIN”设为除“000 - Reserved”外的其它值,此时OPAMP工作在PGA模式。

在这种模式下,OPAMP与内部电阻矩阵连接,根据NGAIN和PGAIN设置值来放大输入电压,放大的原理将在“LPC553x OPAMP模块的使用”中说明。

b207ea4a-d1b0-11ec-bce3-dac502259ad0.png

图7. OPAMP功能框图

LPC553x OPAMP模块管脚描述

LPC553x OPAMP 模块管脚描述:

管脚OPAMP0_INP / PIO0_8,缺省为OPAMP0_INP

管脚OPAMP1_INP / PIO0_27,缺省为OPAMP1_INP

管脚OPAMP2_INP / PIO2_1,缺省为OPAMP2_INP

管脚OPAMP0_INN – 专用管脚

管脚OPAMP1_INN – 专用管脚

管脚OPAMP2_INN – 专用管脚

管脚OPAMP0_Out / PIO1_9,缺省为OPAMP0_Out.

管脚OPAMP1_Out / PIO2_14,缺省为OPAMP1_Out.

管脚OPAMP2_Out / PIO2_2,缺省为OPAMP2_Out.

LPC553x OPAMP模块的使用

◄ 将OPAMP模块用作电压跟随器 ►

将寄存器OPAMP_CTR [26-24]位“NGAIN”设为“000 – Buffer”,使得OPAMP工作在缓冲器模式。

连接管脚 OPAMPx_INN 和 OPAMPx_OUT.

根据前面运放典型电路的分析,可得到:

VOUT = VINP

从而实现电压跟随器功能。

b224bfda-d1b0-11ec-bce3-dac502259ad0.png

图8. 将OPAMP模块用作电压跟随器

◄ 将OPAMP模块用作带偏置的差分放大电路 ►

将LPC553x的OPAMP设为PGA模式,此时OPAMP使用内部电阻矩阵来得到NGAIN, PGAIN。如图9所示。

内部电阻矩阵等效于R1,R2,R3,R4。

R2/R1 = NGAIN

R4/R3 = PGAIN

NGAIN, PGAIN放大增益为:x1, x2, x4, x8, x16, x33, x64。如图10所示。

b27583ac-d1b0-11ec-bce3-dac502259ad0.png

图9. NGAIN, PGAIN with gain rate x1, x2, x4, x8, x16,x33, x64 LPC553x OPAMP功能框图和等效电路

b2888650-d1b0-11ec-bce3-dac502259ad0.png

图10. NGAIN, PGAIN放大增益: x1, x2, x4, x8, x16, x33, x64

根据前面运放典型电路分析中的等式(5):

b2bd9b74-d1b0-11ec-bce3-dac502259ad0.png

令:

R2/R1 = NGAINR4/R3 = PGAIN

可得:

b2da7028-d1b0-11ec-bce3-dac502259ad0.png

从而实现带偏置的差分放大功能。

下图为相应等效电路。

b30be428-d1b0-11ec-bce3-dac502259ad0.png

图11. 将OPAMP模块用作带偏置的差分放大等效电路

◄ 将OPAMP模块用作差分放大电路 ►

将LPC553x的OPAMP设为PGA模式。

将寄存器OPAMP_CTR [18-17]位 “PREF” 设为 “ 00 – Select vrefh3 ”, 可使得OPAMP 将 DAC0OUT 作为VPREF。

让DACxOUT 输出 “0”电平使得VPREF为“0”电平。

根据等式(6)可得:

b33d4d6a-d1b0-11ec-bce3-dac502259ad0.png

从而实现差分放大功能。

下图为相应等效电路。

b357a944-d1b0-11ec-bce3-dac502259ad0.png

图12. 将OPAMP模块用作差分放大电路

◄ 将OPAMP模块用作同相比例放大电路 ►

将LPC553x的OPAMP设为PGA模式。

将寄存器OPAMP_CTR [18-17]位 “PREF” 设为 “ 10 – Select vrefh1 ”, OPAMP将 VREFOUT作为VPREF,但并不使能VREF模块(缺省状态)从而使得VPREF成为高阻状态。此时VPREF= VINP。

将VINN接到 “0”电平。

根据等式(6)可得:

b3b6ec9c-d1b0-11ec-bce3-dac502259ad0.png

从而实现同相比例放大功能。

下图为相应等效电路。

b3d02108-d1b0-11ec-bce3-dac502259ad0.png

图13. 将OPAMP模块用作同相比例放大电路

◄ 将OPAMP模块用作反相比例放大电路 ►

将LPC553x的OPAMP设为PGA模式。

同上使得VPREF成为高阻状态。此时VPREF= VINP。

将VINP接到 “0”电平, 使得 VPREF=VINP= 0

根据等式(6)可得:

VOUT = – NGAIN * VINN

从而实现反相比例放大功能。

下图为相应等效电路。

b3e2c98e-d1b0-11ec-bce3-dac502259ad0.png

图14. 将OPAMP模块用作反相比例放大电路

以上就是对LPC553x OPAMP模块在实际使用方面的介绍和分析,希望能够给广大恩智浦微控制器的爱好者,在使用LPC553x的OPAMP模块时带来方便。谢谢浏览!

原文标题:如何使用LPC553x的运放功能模块

文章出处:【微信公众号:恩智浦MCU加油站】欢迎添加关注!文章转载请注明出处。

审核编辑:汤梓红

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 运算放大器
    +关注

    关注

    215

    文章

    4884

    浏览量

    172456
  • 恩智浦
    +关注

    关注

    14

    文章

    5821

    浏览量

    106537
  • Opamp
    +关注

    关注

    2

    文章

    37

    浏览量

    19429

原文标题:如何使用LPC553x的运放功能模块

文章出处:【微信号:NXP_SMART_HARDWARE,微信公众号:恩智浦MCU加油站】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    轨对轨运算放大器工作原理及优势

    本帖最后由 gk320830 于 2015-3-4 16:18 编辑 轨对轨运算放大器工作原理及优势
    发表于 06-23 11:12

    运算放大器工作原理

    运算放大器具有两个输入端和一个输出端,如图1-1所示,其中标有“+”号的输入端为“同相输入端”而不能叫做正端),另一只标有“一”号的输入端为“反相输入端”同样也不能叫做负端,如果先后分别从这两个输入
    发表于 10-12 09:42

    运算放大器实验

    运算放大器实验 一. 实验目的加深理解运算放大器电路的工作原理和特点,掌握用LM324 运算放大电路构成基本信号
    发表于 09-22 11:35 5901次阅读
    <b class='flag-5'>运算放大器</b>实验

    运算放大器,运算放大器是什么意思

    运算放大器,运算放大器是什么意思 运算放大器的概念 运算放大器(常简称为“运放”)是具有很高放大倍数的电路单元
    发表于 03-09 15:27 3782次阅读

    运算放大器工作原理及选择

    运算放大器工作原理及选择 1. 模拟运放的分类及特点     模拟运算放大器从诞生至今,已有40多年的历史
    发表于 04-28 15:37 3941次阅读

    运算放大器应用电路

    本文章介绍了运算放大器应用电路的设计,掌握运算放大器的原理以及滤波的工作原理,以及仿真电路的设计。
    发表于 01-20 15:39 32次下载

    几种典型运算放大器的应用技术

    几种典型运算放大器的应用技术
    发表于 03-05 15:00 2次下载

    实验七 集成运算放大器运用的测量

    集成运算放大器运用的测量
    发表于 03-28 10:46 3次下载

    运算放大器工作原理与选择

    运算放大器工作原理与选择,详细叙述了运放的各个参数及作用、工作原理,还有选型,很详细的资料。
    发表于 07-10 14:31 15次下载

    运算放大器里面是什么

    本文首先介绍了运算放大器种类及特性参数,其次介绍了运算放大器的组成,最后介绍了运算放大器工作原理
    的头像 发表于 08-16 15:59 3.8w次阅读

    集成运算放大器工作原理分析与理解

    集成运算放大器工作原理分析与理解介绍。
    发表于 06-23 11:55 74次下载

    简述运算放大器运用

    运算放大器是一种可以进行数学运算放大电路。运算放大器不仅可以通过增大或减小模拟输入信号来实 现放大,还可以进行加减法以及微积分等
    的头像 发表于 04-24 15:05 2165次阅读
    简述<b class='flag-5'>运算放大器</b>的<b class='flag-5'>运用</b>

    运算放大器工作原理工作模式

    运算放大器也称为运算放大器,是最有用的模拟电路元件之一。它有许多用途,例如放大器、缓冲器、逆变器、积分器、微分器、振荡器、比较器等。由于它用途广泛,因此可用于各种应用。因此,了解运算放大器
    发表于 05-11 17:30 4042次阅读
    <b class='flag-5'>运算放大器</b>的<b class='flag-5'>工作原理</b>和<b class='flag-5'>工作</b>模式

    如何使用LPC553x的运放功能模块?

    如何使用LPC553x的运放功能模块?
    的头像 发表于 10-26 18:50 564次阅读
    如何使用<b class='flag-5'>LPC553x</b>的运放功能模块?

    运算放大器工作原理 运算放大器的计算公式

    工作原理和计算公式。 一、运算放大器工作原理运算放大器由多个晶体管、电阻和电容器等元件组成。它的输入端有两个差模输入端和一个共模输入端,输出端有一个单端输出。 差模输入:
    的头像 发表于 01-30 14:18 3953次阅读