0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

面向临床及科研的医学图像AI开发平台Strix

NVIDIA英伟达企业解决方案 来源:NVIDIA英伟达企业解决方案 作者:NVIDIA英伟达企业解 2022-05-13 11:11 次阅读

上海市磁共振重点实验室(Shanghai Key Laboratory of Magnetic Resonance)是从属于华东师范大学的省部级重点实验室,是国内核磁共振研究和人才培养的主要基地之一。多年来,坚持自己在磁振物理学上的专业特色,逐渐形成了应用研究与技术研发并重,磁共振波谱与磁共振成像兼顾的局面,并先后建立了“上海市磁共振成像技术平台和上海市核磁共振波谱技术服务平台”两个开放平台,进一步强化了实验室的开放服务功能。

目前该实验室已与上海市范围内十几家重点医院展开科研合作,对高效的大数据的医学图像处理有着急切的需求。此次借助 NVIDIA A100 GPU 和自身庞大的计算能力,构建出了高效稳定的科研硬件平台,用于医学图像的各种后处理任务和深度学习相关任务。

不同于二维自然图像,医学图像往往单个数据数据量较大,对于网络传输带宽及 GPU 显存都提出了新的挑战。并且由于科研课题较大、研究内容跨度较大和研究人员较多等因素。深度学习的硬件平台效率成为了科研工作效率的瓶颈。如何在有限的预算内完成深度学习平台的构建成为了新的挑战。

跨节点使用性能不高,需要优化网络环境,目前实验室仅使用了一根 1GB 带宽网线连接公用存储服务器,在大型训练任务中数据传输速度低成为深度学习任务的瓶颈。

基于以上挑战,作为解决方案的第一步,上海市磁共振重点实验室使用了 NVIDIA A100 GPU 加速器,将深度学习训练、推理和分析整合至一个易于部署的统一 AI 基础架构中,通过大显存方法减少 IO 速度带来的影响。

目前,实验室包括 A100 计算服务器总计拥有 7 个计算服务器(计算节点),每台服务器拥有 4 块 A100 GPU 加速器用于深度学习,每台服务器共享同一个存储服务器。所有用户通过 Active Directory 账户共享计算及存储服务器。

并且为了进一步整合当前实验室中 NVIDIA GPU 服务器资源,实验室开发了面向临床及科研的医学图像 AI 开发开源平台“Strix”。该平台基于 NVIDIA 团队的 MONAI 医学图像 AI 处理库开发。整合了医学图像 AI 开发中涉及的数据准备,数据预处理,多种任务框架,结果可视化等步骤。让医学图像 AI 开发可以更为简单易于上手。针对不同架构的 GPU, Strix 也做了针对性的优化。例如 A100 GPU 的 MIG 虚拟 GPU 技术,我们提供了虚拟 GPU 交互式选择,实现让用户更轻松的选择目标 GPU 进行训练。

面向临床及科研的医学图像 AI 开发平台 Strix

通过 NVIDIA A100 GPU 的 MIG 技术,在小团队的工作环境中有较高的自由度,在计算资源较为紧缺的情况下,可以增加可用用户数。在显存资源较为紧缺的情况下,可以减少用户数增加单个显存容量。

更大的显存可以运行需要更大显存的深度学习任务,让许多从前无法实现的科研课题在新的 GPU 上成为可能。同时最新的 Ampere 架构支持了半精度运算,搭配 NVIDIA 的自动混合精度(Automatic Mixed Precision)技术,在节省运行显存开销的同时,加速神经网络训练速度。带来了更快的网络训练及推理效率。

上海市磁共振重点实验室表示,“作为以医学图像处理为重点的课题组,通过与 NVIDIA 的紧密合作,我们将更高效地利用前沿 AI 技术及医学图像技术,解决医疗行业的高价值问题,专注在更智能更高效更安全的未来医疗的新技术。”

本案例中 NVIDIA 精英级合作伙伴信弘智能助力上海市磁共振重点实验室部署了高效的科研硬件平台。点击“阅读原文”详细了解 AI 基础架构的通用平台 NVIDIA A100。

原文标题:NVIDIA A100 加速医学图像处理深度学习研究

文章出处:【微信公众号:NVIDIA英伟达企业解决方案】欢迎添加关注!文章转载请注明出处。

审核编辑:汤梓红

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • NVIDIA
    +关注

    关注

    14

    文章

    5071

    浏览量

    103506
  • 图像处理
    +关注

    关注

    27

    文章

    1299

    浏览量

    56837
  • 深度学习
    +关注

    关注

    73

    文章

    5511

    浏览量

    121392
收藏 人收藏

    评论

    相关推荐

    AI开发平台如何赋能开发

    当下,AI开发平台通过提供丰富的工具集、优化的开发环境以及高效的部署能力,极大地降低了AI应用的开发
    的头像 发表于 01-17 14:47 50次阅读

    面向教学科研的汽车电气与电子控制系统开发及测试实验室

    及实践能力不足的问题,需要与汽车行业实际的应用进行适配。经纬恒润以量产车型电子电气开发经验为基础,推出与企业研发测试同步的面向教学科研的汽车电子电气开发验证实验室,旨在从产业中来到教学
    的头像 发表于 12-17 17:00 489次阅读
    <b class='flag-5'>面向</b>教学<b class='flag-5'>科研</b>的汽车电气与电子控制系统<b class='flag-5'>开发</b>及测试实验室

    西湖大学:科学家+AI科研新范式的样本

    北京2024年12月11日 /美通社/ -- 今年的诺贝尔奖,将AI推到了科学舞台的中央,标志着AI在科学研究中的重要地位得到了认可,也体现了学科交叉赋能将成为AI时代的科研发展趋势。
    的头像 发表于 12-12 15:59 222次阅读
    西湖大学:科学家+<b class='flag-5'>AI</b>,<b class='flag-5'>科研</b>新范式的样本

    高通AI Hub:轻松实现Android图像分类

    高通AI Hub为开发者提供了一个强大的平台,以优化、验证和部署在Android设备上的机器学习模型。这篇文章将介绍如何使用高通AI Hub进行图像
    的头像 发表于 11-26 01:03 292次阅读
    高通<b class='flag-5'>AI</b> Hub:轻松实现Android<b class='flag-5'>图像</b>分类

    工具型AI标注平台SpeedDP工作流程是怎样的?

    AI算法的定制化开发平台经过不断的迭代,能够支持YOLO系列算法进行图像标注。SpeedDP这个平台使用起来十分简便,在
    的头像 发表于 11-19 01:02 418次阅读
    工具型<b class='flag-5'>AI</b>标注<b class='flag-5'>平台</b>SpeedDP工作流程是怎样的?

    自动化AI开发平台功能介绍

    自动化AI开发平台集成了多种算法、工具和框架,旨在帮助开发者更快速、高效地设计、训练、部署和管理AI模型。以下,
    的头像 发表于 11-14 09:29 279次阅读

    AI项目管理平台怎么用

    AI项目管理平台是一种集成了项目管理工具、AI开发环境和数据分析能力的综合性平台。接下来,AI
    的头像 发表于 11-13 09:38 258次阅读

    AI开发平台可以干什么

    AI开发平台是指提供一系列工具、库、框架和服务,旨在帮助开发者更快速、更高效地设计、训练、部署和管理AI模型的综合性
    的头像 发表于 11-05 09:53 206次阅读

    Arm推出GitHub平台AI工具,简化开发AI应用开发部署流程

    专为 GitHub Copilot 设计的 Arm 扩展程序,可加速从云到边缘侧基于 Arm 平台开发。 Arm 原生运行器为部署云原生、Windows on Arm 以及云到边缘侧的 AI
    的头像 发表于 10-31 18:51 2774次阅读

    云端ai开发环境怎么样

    随着云计算技术的成熟与普及,云端AI开发环境应运而生,为AI开发者提供了一个高效、灵活、可扩展的开发与部署
    的头像 发表于 10-24 09:37 219次阅读

    AMD官方确认:Strix Halo命名,史上最强APU诞生

    10月18日资讯,随着代号为Strix Point的锐龙AI 300系列的面世,市场对更高阶的Strix Halo充满了期待,尤其是其GPU性能据称将达到前所未有的高度,甚至有传言称可与移动版RTX
    的头像 发表于 10-22 11:29 644次阅读

    如何选择AI即服务平台

    AI即服务(AIaaS)平台通过提供预构建的AI模型、开发工具、基础设施以及专业支持,帮助企业快速实现AI能力的集成和应用。
    的头像 发表于 10-08 10:40 208次阅读

    卷积神经网络在图像医学诊断中的优势

    随着人工智能技术的迅猛发展,卷积神经网络(Convolutional Neural Network,简称CNN)作为一种深度学习的代表算法,在图像处理和医学诊断领域展现出了巨大的潜力和优势。CNN
    的头像 发表于 07-01 15:59 1334次阅读

    常见的医学图像读取方式和预处理方法

    基于深度学习做医学图像数据分析,例如病灶检测、肿瘤或者器官分割等任务,第一步就是要对数据有一个大概的认识。但是我刚刚入门医学图像分割的时候,很迷茫不知道自己该干啥,不知道需要准备哪些知
    发表于 04-19 11:43 946次阅读
    常见的<b class='flag-5'>医学</b><b class='flag-5'>图像</b>读取方式和预处理方法

    字节AI Bot开发平台Coze国内版上线

    字节跳动近日宣布,其新一代一站式AI Bot开发平台Coze的国内版已于2月1日正式上线。这一平台的推出旨在降低AI应用的
    的头像 发表于 02-05 10:48 2019次阅读