0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

分布式锁的设计与实现

数据分析与开发 来源:捡田螺的小男孩 作者:捡田螺的小男孩 2022-05-13 15:36 次阅读

前言

今天跟大家探讨一下分布式锁的设计与实现。希望对大家有帮助,如果有不正确的地方,欢迎指出,一起学习,一起进步哈。

  • 分布式锁概述
  • 数据库分布式锁
  • Redis分布式锁
  • Zookeeper分布式锁
  • 三种分布式锁对比

1. 分布式锁概述

我们的系统都是分布式部署的,日常开发中,秒杀下单、抢购商品等等业务场景,为了防⽌库存超卖,都需要用到分布式锁

分布式锁其实就是,控制分布式系统不同进程共同访问共享资源的一种锁的实现。如果不同的系统或同一个系统的不同主机之间共享了某个临界资源,往往需要互斥来防止彼此干扰,以保证一致性。

业界流行的分布式锁实现,一般有这3种方式:

  • 基于数据库实现的分布式锁
  • 基于Redis实现的分布式锁
  • 基于Zookeeper实现的分布式锁

2. 基于数据库的分布式锁

2.1 数据库悲观锁实现的分布式锁

可以使用select ... for update来实现分布式锁。我们自己的项目,分布式定时任务,就使用类似的实现方案,我给大家来展示个简单版的哈

表结构如下:

CREATETABLE`t_resource_lock`(
`key_resource`varchar(45)COLLATEutf8_binNOTNULLDEFAULT'资源主键',
`status`char(1)COLLATEutf8_binNOTNULLDEFAULT''COMMENT'S,F,P',
`lock_flag`int(10)unsignedNOTNULLDEFAULT'0'COMMENT'1是已经锁0是未锁',
`begin_time`datetimeDEFAULTNULLCOMMENT'开始时间',
`end_time`datetimeDEFAULTNULLCOMMENT'结束时间',
`client_ip`varchar(45)COLLATEutf8_binNOTNULLDEFAULT'抢到锁的IP',
`time`int(10)unsignedNOTNULLDEFAULT'60'COMMENT'方法生命周期内只允许一个结点获取一次锁,单位:分钟',
PRIMARYKEY(`key_resource`)USINGBTREE
)ENGINE=InnoDBDEFAULTCHARSET=utf8COLLATE=utf8_bin

加锁lock方法的伪代码如下:

@Transcational//一定要加事务
publicbooleanlock(StringkeyResource,inttime){
resourceLock='select*fromt_resource_lockwherekey_resource='#{keySource}'forupdate';

try{
if(resourceLock==null){
//插入锁的数据
resourceLock=newResourceLock();
resourceLock.setTime(time);
resourceLock.setLockFlag(1);//上锁
resourceLock.setStatus(P);//处理中
resourceLock.setBeginTime(newDate());
intcount="insertintoresourceLock";
if(count==1){
//获取锁成功
returntrue;
}
returnfalse;
}
}catch(Exceptionx){
returnfalse;
}

//没上锁并且锁已经超时,即可以获取锁成功
if(resourceLock.getLockFlag=='0'&&'S'.equals(resourceLock.getstatus)
&&newDate()>=resourceLock.addDateTime(resourceLock.getBeginTime(,time)){
resourceLock.setLockFlag(1);//上锁
resourceLock.setStatus(P);//处理中
resourceLock.setBeginTime(newDate());
//updateresourceLock;
returntrue;
}elseif(newDate()>=resourceLock.addDateTime(resourceLock.getBeginTime(,time)){
//超时未正常执行结束,获取锁失败
returnfalse;
}else{
returnfalse;
}
}

解锁unlock方法的伪代码如下:

publicvoidunlock(Stringv,status){
resourceLock.setLockFlag(0);//解锁
resourceLock.setStatus(status);S:表示成功,F表示失败
//updateresourceLock;
return;
}

整体流程:

try{
if(lock(keyResource,time)){//加锁
 status = process();//你的业务逻辑处理。
}
}finally{
unlock(keyResource,status);//释放锁
}

其实这个悲观锁实现的分布式锁,整体的流程还是比较清晰的。就是先select ... for update锁住主键key_resource那个记录,如果为空,则可以插入一条记录,如果已有记录判断下状态和时间是否已经超时。这里需要注意一下哈,必须要加事务哈。

2.2 数据库乐观锁实现的分布式锁

除了悲观锁,还可以用乐观锁实现分布式锁。乐观锁,顾名思义,就是很乐观,每次更新操作,都觉得不会存在并发冲突,只有更新失败后,才重试。它是基于CAS思想实现的。我以前的公司扣减余额就是用这种方案。

搞个version字段,每次更新修改,都会自增加一,然后去更新余额时,把查出来的那个版本号,带上条件去更新,如果是上次那个版本号,就更新,如果不是,表示别人并发修改过了,就继续重试。

大概流程如下:

  1. 查询版本号和余额
selectversion,balancefromaccountwhereuser_id='666';

假设查到版本号是oldVersion=1.

  1. 逻辑处理,判断余额
if(balance<扣减金额){
   return;
}

left_balance=balance-扣减金额;
  1. 进行扣减余额
updateaccountsetbalance=#{left_balance},version=version+1whereversion
=#{oldVersion}andbalance>=#{left_balance} and user_id='666';

大家可以看下这个流程图哈:

7f98b3b2-c276-11ec-bce3-dac502259ad0.png

这种方式适合并发不高的场景,一般需要设置一下重试的次数

3.基于Redis实现的分布式锁

Redis分布式锁一般有以下这几种实现方式:

  • setnx + expire
  • setnx + value值是过期时间
  • set的扩展命令(set ex px nx)
  • set ex px nx + 校验唯一随机值,再删除
  • Redisson
  • Redisson + RedLock

3.1 setnx + expire

聊到Redis分布式锁,很多小伙伴反手就是setnx + expire,如下:

if(jedis.setnx(key,lock_value)==1){//setnx加锁
expire(key,100);//设置过期时间
try{
dosomething//业务处理
}catch(){
}
finally{
jedis.del(key);//释放锁
}
}

这段代码是可以加锁成功,但是你有没有发现问题,加锁操作和设置超时时间是分开的。假设在执行完setnx加锁后,正要执行expire设置过期时间时,进程crash掉或者要重启维护了,那这个锁就长生不老了,别的线程永远获取不到锁啦,所以分布式锁不能这么实现

3.2 setnx + value值是过期时间

longexpires=System.currentTimeMillis()+expireTime;//系统时间+设置的过期时间
StringexpiresStr=String.valueOf(expires);

//如果当前锁不存在,返回加锁成功
if(jedis.setnx(key,expiresStr)==1){
returntrue;
}
//如果锁已经存在,获取锁的过期时间
StringcurrentValueStr=jedis.get(key);

//如果获取到的过期时间,小于系统当前时间,表示已经过期
if(currentValueStr!=null&&Long.parseLong(currentValueStr)< System.currentTimeMillis()) {

     // 锁已过期,获取上一个锁的过期时间,并设置现在锁的过期时间(不了解redis的getSet命令的小伙伴,可以去官网看下哈)
    String oldValueStr = jedis.getSet(key, expiresStr);
    
    if(oldValueStr!=null&&oldValueStr.equals(currentValueStr)){
//考虑多线程并发的情况,只有一个线程的设置值和当前值相同,它才可以加锁
returntrue;
}
}

//其他情况,均返回加锁失败
returnfalse;
}

日常开发中,有些小伙伴就是这么实现分布式锁的,但是会有这些缺点

  • 过期时间是客户端自己生成的,分布式环境下,每个客户端的时间必须同步。
  • 没有保存持有者的唯一标识,可能被别的客户端释放/解锁
  • 锁过期的时候,并发多个客户端同时请求过来,都执行了jedis.getSet(),最终只能有一个客户端加锁成功,但是该客户端锁的过期时间,可能被别的客户端覆盖。

3.3 set的扩展命令(set ex px nx)

这个命令的几个参数分别表示什么意思呢?跟大家复习一下:

SETkeyvalue[EXseconds][PXmilliseconds][NX|XX]
  • EX second :设置键的过期时间为second秒。
  • PX millisecond :设置键的过期时间为millisecond毫秒。
  • NX :只在键不存在时,才对键进行设置操作。
  • XX :只在键已经存在时,才对键进行设置操作。
if(jedis.set(key,lock_value,"NX","EX",100s)==1){//加锁
try{
dosomething//业务处理
}catch(){
}
finally{
jedis.del(key);//释放锁
}
}

这个方案可能存在这样的问题:

  • 锁过期释放了,业务还没执行完。
  • 锁被别的线程误删。

有些伙伴可能会有个疑问,就是锁为什么会被别的线程误删呢?假设并发多线程场景下,线程A获得了锁,但是它没释放锁的话,线程B是获取不到锁的,所以按道理它是执行不到加锁下面的代码滴,怎么会导致锁被别的线程误删呢?

假设线程A和B,都想用key加锁,最后A抢到锁加锁成功,但是由于执行业务逻辑的耗时很长,超过了设置的超时时间100s。这时候,Redis就自动释放了key锁。这时候线程B就可以加锁成功了,接下啦,它也执行业务逻辑处理。假设碰巧这时候,A执行完自己的业务逻辑,它就去释放锁,但是它就把B的锁给释放了。

3.4 set ex px nx + 校验唯一随机值,再删除

为了解决锁被别的线程误删问题。可以在set ex px nx的基础上,加上个校验的唯一随机值,如下:

if(jedis.set(key,uni_request_id,"NX","EX",100s)==1){//加锁
try{
dosomething//业务处理
}catch(){
}
finally{
//判断是不是当前线程加的锁,是才释放
if(uni_request_id.equals(jedis.get(key))){
jedis.del(key);//释放锁
}
}
}

在这里,判断当前线程加的锁和释放锁不是一个原子操作。如果调用jedis.del()释放锁的时候,可能这把锁已经不属于当前客户端,会解除他人加的锁。

一般可以用lua脚本来包一下。lua脚本如下:

ifredis.call('get',KEYS[1])==ARGV[1]then
returnredis.call('del',KEYS[1])
else
return0
end;

这种方式比较不错了,一般情况下,已经可以使用这种实现方式。但是还是存在:锁过期释放了,业务还没执行完的问题

3.5 Redisson

对于可能存在锁过期释放,业务没执行完的问题。我们可以稍微把锁过期时间设置长一些,大于正常业务处理时间就好啦。如果你觉得不是很稳,还可以给获得锁的线程,开启一个定时守护线程,每隔一段时间检查锁是否还存在,存在则对锁的过期时间延长,防止锁过期提前释放。

当前开源框架Redisson解决了这个问题。可以看下Redisson底层原理图:

7fba4022-c276-11ec-bce3-dac502259ad0.png

只要线程一加锁成功,就会启动一个watch dog看门狗,它是一个后台线程,会每隔10秒检查一下,如果线程1还持有锁,那么就会不断的延长锁key的生存时间。因此,Redisson就是使用watch dog解决了锁过期释放,业务没执行完问题

3.6 Redisson + RedLock

前面六种方案都只是基于Redis单机版的分布式锁讨论,还不是很完美。因为Redis一般都是集群部署的:

7fcfa048-c276-11ec-bce3-dac502259ad0.png

如果线程一在Redismaster节点上拿到了锁,但是加锁的key还没同步到slave节点。恰好这时,master节点发生故障,一个slave节点就会升级为master节点。线程二就可以顺理成章获取同个key的锁啦,但线程一也已经拿到锁了,锁的安全性就没了。

为了解决这个问题,Redis作者antirez提出一种高级的分布式锁算法Redlock。它的核心思想是这样的:

部署多个Redis master,以保证它们不会同时宕掉。并且这些master节点是完全相互独立的,相互之间不存在数据同步。同时,需要确保在这多个master实例上,是与在Redis单实例,使用相同方法来获取和释放锁。

我们假设当前有5个Redis master节点,在5台服务器上面运行这些Redis实例。

7feb0018-c276-11ec-bce3-dac502259ad0.png

RedLock的实现步骤:

  1. 获取当前时间,以毫秒为单位。
  2. 按顺序向5个master节点请求加锁。客户端设置网络连接和响应超时时间,并且超时时间要小于锁的失效时间。(假设锁自动失效时间为10秒,则超时时间一般在5-50毫秒之间,我们就假设超时时间是50ms吧)。如果超时,跳过该master节点,尽快去尝试下一个master节点。
  3. 客户端使用当前时间减去开始获取锁时间(即步骤1记录的时间),得到获取锁使用的时间。当且仅当超过一半(N/2+1,这里是5/2+1=3个节点)的Redis master节点都获得锁,并且使用的时间小于锁失效时间时,锁才算获取成功。(如上图,10s> 30ms+40ms+50ms+4m0s+50ms)
  4. 如果取到了锁,key的真正有效时间就变啦,需要减去获取锁所使用的时间。
  5. 如果获取锁失败(没有在至少N/2+1个master实例取到锁,有或者获取锁时间已经超过了有效时间),客户端要在所有的master节点上解锁(即便有些master节点根本就没有加锁成功,也需要解锁,以防止有些漏网之鱼)。

简化下步骤就是:

  • 按顺序向5个master节点请求加锁
  • 根据设置的超时时间来判断,是不是要跳过该master节点。
  • 如果大于等于3个节点加锁成功,并且使用的时间小于锁的有效期,即可认定加锁成功啦。
  • 如果获取锁失败,解锁!

Redisson实现了redLock版本的锁,有兴趣的小伙伴,可以去了解一下哈~

4.Zookeeper分布式锁

在学习Zookeeper分布式锁之前,我们复习一下Zookeeper的节点哈。

Zookeeper的节点Znode有四种类型:

  • 持久节点:默认的节点类型。创建节点的客户端与zookeeper断开连接后,该节点依旧存在。
  • 持久节点顺序节点:所谓顺序节点,就是在创建节点时,Zookeeper根据创建的时间顺序给该节点名称进行编号,持久节点顺序节点就是有顺序的持久节点。
  • 临时节点:和持久节点相反,当创建节点的客户端与zookeeper断开连接后,临时节点会被删除。
  • 临时顺序节点:有顺序的临时节点。

Zookeeper分布式锁实现应用了临时顺序节点。这里不贴代码啦,来讲下zk分布式锁的实现原理吧。

4.1 zk获取锁过程

当第一个客户端请求过来时,Zookeeper客户端会创建一个持久节点locks。如果它(Client1)想获得锁,需要在locks节点下创建一个顺序节点lock1.如图

80064bb6-c276-11ec-bce3-dac502259ad0.png

接着,客户端Client1会查找locks下面的所有临时顺序子节点,判断自己的节点lock1是不是排序最小的那一个,如果是,则成功获得锁。

801faf7a-c276-11ec-bce3-dac502259ad0.png

这时候如果又来一个客户端client2前来尝试获得锁,它会在locks下再创建一个临时节点lock2

80360bda-c276-11ec-bce3-dac502259ad0.png

客户端client2一样也会查找locks下面的所有临时顺序子节点,判断自己的节点lock2是不是最小的,此时,发现lock1才是最小的,于是获取锁失败。获取锁失败,它是不会甘心的,client2向它排序靠前的节点lock1注册Watcher事件,用来监听lock1是否存在,也就是说client2抢锁失败进入等待状态。

804e8dfe-c276-11ec-bce3-dac502259ad0.png

此时,如果再来一个客户端Client3来尝试获取锁,它会在locks下再创建一个临时节点lock3

80660bfa-c276-11ec-bce3-dac502259ad0.png

同样的,client3一样也会查找locks下面的所有临时顺序子节点,判断自己的节点lock3是不是最小的,发现自己不是最小的,就获取锁失败。它也是不会甘心的,它会向在它前面的节点lock2注册Watcher事件,以监听lock2节点是否存在。807bd8fe-c276-11ec-bce3-dac502259ad0.png

4.2 释放锁

我们再来看看释放锁的流程,Zookeeper的客户端业务完成或者发生故障,都会删除临时节点,释放锁。如果是任务完成,Client1会显式调用删除lock1的指令

809e3534-c276-11ec-bce3-dac502259ad0.png

如果是客户端故障了,根据临时节点得特性,lock1是会自动删除的

80c249c4-c276-11ec-bce3-dac502259ad0.png

lock1节点被删除后,Client2可开心了,因为它一直监听着lock1lock1节点删除,Client2立刻收到通知,也会查找locks下面的所有临时顺序子节点,发下lock2是最小,就获得锁。

80d48ac6-c276-11ec-bce3-dac502259ad0.png

同理,Client2获得锁之后,Client3也对它虎视眈眈,啊哈哈~

  • Zookeeper设计定位就是分布式协调,简单易用。如果获取不到锁,只需添加一个监听器即可,很适合做分布式锁。
  • Zookeeper作为分布式锁也缺点:如果有很多的客户端频繁的申请加锁、释放锁,对于Zookeeper集群的压力会比较大。

5. 三种分布式锁对比

5.1 数据库分布式锁实现

优点:

  • 简单,使用方便,不需要引入Redis、zookeeper等中间件。

缺点:

  • 不适合高并发的场景
  • db操作性能较差;

5.2 Redis分布式锁实现

优点:

  • 性能好,适合高并发场景
  • 较轻量级
  • 有较好的框架支持,如Redisson

缺点:

  • 过期时间不好控制
  • 需要考虑锁被别的线程误删场景

5.3 Zookeeper分布式锁实现

缺点:

  • 性能不如redis实现的分布式锁
  • 比较重的分布式锁。

优点:

  • 有较好的性能和可靠性
  • 有封装较好的框架,如Curator

5.4 对比汇总

  • 从性能角度(从高到低)Redis > Zookeeper >= 数据库;
  • 从理解的难易程度角度(从低到高)数据库 > Redis > Zookeeper;
  • 从实现的复杂性角度(从低到高)Zookeeper > Redis > 数据库;
  • 从可靠性角度(从高到低)Zookeeper > Redis > 数据库。

原文标题:面试必备:聊聊分布式锁的多种实现!

文章出处:【微信公众号:数据分析与开发】欢迎添加关注!文章转载请注明出处。

审核编辑:汤梓红
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 数据库
    +关注

    关注

    7

    文章

    3750

    浏览量

    64217
  • 分布式
    +关注

    关注

    1

    文章

    852

    浏览量

    74434
  • Redis
    +关注

    关注

    0

    文章

    370

    浏览量

    10824

原文标题:面试必备:聊聊分布式锁的多种实现!

文章出处:【微信号:DBDevs,微信公众号:数据分析与开发】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    #硬声创作季 12-分布式实现方案(数据库方式实现分布式

    数据库
    Mr_haohao
    发布于 :2022年09月03日 08:12:05

    #硬声创作季 13-分布式实现方案(Zookeeper方式实现

    JAVA编程语言
    Mr_haohao
    发布于 :2022年09月03日 08:12:43

    #硬声创作季 14-分布式实现方案(Zookeeper方式实现

    JAVA编程语言
    Mr_haohao
    发布于 :2022年09月03日 08:13:28

    #硬声创作季 15-分布式实现方案(Zookeeper方式实现

    JAVA编程语言
    Mr_haohao
    发布于 :2022年09月03日 08:14:06

    #硬声创作季 16-分布式实现方案(Zookeeper方式实现

    JAVA编程语言
    Mr_haohao
    发布于 :2022年09月03日 08:14:44

    #硬声创作季 20-分布式实现方案(Redis方式实现分布式

    编程语言
    Mr_haohao
    发布于 :2022年09月03日 08:17:19

    #硬声创作季 SSG分布式视频教程:62.ZooKeeper分布式实现思路

    数据库MySQL
    Mr_haohao
    发布于 :2022年10月02日 23:31:51

    #硬声创作季 SSG分布式视频教程:64.ZooKeeper分布式的基本实现

    数据库MySQL
    Mr_haohao
    发布于 :2022年10月02日 23:32:31

    #硬声创作季 SSG分布式视频教程:65.测试ZooKeeper分布式的基本实现

    数据库分布式MySQL
    Mr_haohao
    发布于 :2022年10月02日 23:33:05

    Redis实战篇-10.分布式-Redis的分布式实现

    Redis
    电子学习
    发布于 :2023年01月07日 15:18:09

    分析3种分布式的设计与实现

    对于高可用性,一般可以通过集群或者master-slave来解决,redis优势是性能出色,劣势就是由于数据在内存中,一旦缓存服务宕机,数据就丢失了。像redis自带复制功能,可以对数据可靠性有
    的头像 发表于 11-26 11:26 2918次阅读
    分析3种<b class='flag-5'>分布式</b><b class='flag-5'>锁</b>的设计与<b class='flag-5'>实现</b>

    探讨一下分布式的设计与实现

    我们再来看看释放的流程,Zookeeper的客户端业务完成或者发生故障,都会删除临时节点,释放。如果是任务完成,Client1会显调用删除lock1的指令
    的头像 发表于 12-28 10:24 433次阅读

    redis分布式如何实现

    Redis分布式是一种基于Redis实现的机制,可以用于多个进程或多台服务器之间对共享资源的并发访问控制。在分布式系统中,由于多个进程或多台服务器同时访问共享资源,可能会发生数据竞争
    的头像 发表于 11-16 11:29 481次阅读

    redis分布式如何实现等待

    Redis是一种高性能的键值存储系统,它除了提供基本的数据缓存功能外,还支持一些复杂的数据结构和功能,例如发布订阅、事务、持久化等。其中,Redis的分布式是其常用的功能之一,可以用于解决多个
    的头像 发表于 11-16 11:31 1108次阅读

    Java手写分布式实现

    随着互联网业务的发展,原本单机部署的系统演化成如今的分布式集群系统后,由于分布式系统多线程
    的头像 发表于 11-17 15:51 525次阅读
    Java手写<b class='flag-5'>分布式</b><b class='flag-5'>锁</b>的<b class='flag-5'>实现</b>