0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

利用横向色散超透镜阵列和单色成像传感器构建了超紧凑型光谱光场成像系统

MEMS 来源:麦姆斯咨询 作者:麦姆斯咨询 2022-06-02 10:36 次阅读

据麦姆斯咨询报道,近日,南京大学王振林教授和祝世宁院士团队在Nature Communications上报道其通过利用横向色散超透镜阵列和单色成像传感器构建了超紧凑型光谱光场成像系统(spectral light-field imaging,SLIM)。SLIM只需一次快照,即可呈现具有4nm光谱分辨率和接近衍射极限分辨率的高级成像。因此,通过SLIM可以区分视觉上无法区分的物体和材料,这极大地推动了理想全光成像技术的发展。

3603c420-e1c6-11ec-ba43-dac502259ad0.jpg

基于超透镜阵列的光谱光场成像


光学成像是一项重要的技术,广泛用于收集物体的空间信息,从高山大楼到微观细胞甚至分子。为了解决平面成像深度分辨率的不足,各种三维(3D)成像技术(例如光场成像、立体视觉、结构光照明和带有附加光源的飞行时间法)已被用于有效地获取拍摄场景或对象的3D空间信息。此外,基于麦克斯韦三元色理论的彩色成像为传统的单色成像引入了一个新的维度,即光谱维度,其简单地将所有光谱整合成一个单一的强度。虽然三色机制(红、绿、蓝)广泛应用于商品成像和显示产品中,但在材料鉴别、工业检测和同色异谱识别等各种应用领域对全光谱信息的需求日益迫切。因此,传统成像与光谱学的融合已成为光学成像发展的必然趋势。

在过去的十年中,科研学者已经开发出许多结合传统平面成像的高效光谱成像技术,例如编码孔径快照光谱成像仪(coded aperture snapshot spectral imager,CASSI)、计算机断层成像光谱仪(computed tomographic imaging spectrometer,CTIS)和棱镜掩模调制成像光谱仪(prism-mask modulation imaging spectrometer,PMIS)。尽管其性能和快照能力令人印象深刻,但嵌入相机中的各种光学元件,例如棱镜、透镜、光栅和掩模,都非常笨重,这严重阻碍了相机更广泛的应用。另一方面,一种能够以超紧凑的尺寸和高质量的性能获取四维信息(4D信息:3D空间信息加上1D光谱信息)的先进成像技术尚未得到有效开发。

近年来,超表面因其轻薄特性而备受青睐,这使其成为笨重、复杂的体光学器件的理想替代品。由密集排列的纳米天线组成的超表面可以精确控制入射光的相位、强度、偏振、轨道角动量和频率。迄今为止,在所有基于超表面的平面光子器件中,超透镜是最典型和最突出的。通过定制化的纳米天线,超薄超透镜在效率、数值孔径(numerical aperture,NA)、宽带消色差、彗差消除等方面表现出相当甚至更好的性能。最近,基于超透镜阵列的光场成像系统也被证明可以在可见光范围内获得3D信息而没有任何色差。开创性的工作还包括利用超表面或其他纳米结构以紧凑的配置获得了高质量的光谱。然而,尽管这一进展为光谱信息获取奠定了良好的基础,但由于难以同时实现高质量光谱和高3D空间分辨率,4D成像仍然遥遥无期。

近期,南京大学王振林教授和祝世宁院士团队利用横向色散超透镜阵列构建了超紧凑型光谱光场成像(SLIM)系统,其通过单色传感器的一次快照记录4D信息。SLIM的主要部件是48 × 48个TiO2基超透镜阵列,其与单色CMOS图像传感器相结合。每个超透镜的直径为30μm,包含了超过25000个TiO2纳米柱和纳米孔。值得一提的是,所设计的纳米柱具有近乎完美的垂直侧壁,且最大纵横比达到了40,这对于控制超透镜阵列的有效折射率至关重要。

36204988-e1c6-11ec-ba43-dac502259ad0.jpg

横向色散超透镜示意图及超透镜阵列的扫描电子显微镜(SEM)图像


研究人员所提出的SLIM的本质是在通过超透镜阵列(一种元件代替多种元件:横向色散元件+代码孔径/掩模+微透镜阵列)成像期间,可以为每个子孔径自然地形成边界约束,从而获得更紧凑的结构和高光线吞吐量。在所提出的SLIM中,图像被每个子孔径分离,这也是用于重建算法的先验知识。

36377784-e1c6-11ec-ba43-dac502259ad0.jpg

SLIM光谱重建算法的数值模拟结果


在这项工作中,SLIM显示了超越传统成像系统的能力。品红色化学织物布和水彩纸两种材料在可见光区域显示出非常相似的光谱分布。当使用典型的平面成像相机时,由于缺乏来自高分辨率光谱信息的深度信息和材料特性,只能捕获品红色“Φ”形图像。无论是光场成像还是光谱成像都不能完全揭示这两个物体之间的差异,只有同时获得4D信息的SLIM成像才能解决此问题。这两种材料的光谱在618nm和626nm处有接近的峰。采用经过训练的光谱重建算法后,光谱分辨率最高可达4 nm,可以很好地区分这两个光谱峰。因此,SLIM捕获的高分辨率光谱非常适应于材料识别和伪装鉴别。

3659aef8-e1c6-11ec-ba43-dac502259ad0.jpg

利用SLIM进行材料识别


研究人员表示,通过SLIM系统捕获的4D信息可以轻松地将变色龙与环境区分开。值得注意的是,SLIM的应用不限于可见光透射/反射/发射光谱。同样的概念可以扩展到红外和拉曼信号场景。此外,紧凑型SLIM主要是在轻薄的超透镜阵列中实现,可与光子芯片或光纤等光学部件集成。基于超透镜阵列的SLIM的4D成像能力将彻底改变现代光学和生物光学系统。


论文信息:
Hua, X., Wang, Y., Wang, S. et al. Ultra-compact snapshot spectral light-field imaging. Nat Commun 13, 2732 (2022).
https://doi.org/10.1038/s41467-022-30439-9

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2545

    文章

    50395

    浏览量

    750731
  • 光谱
    +关注

    关注

    4

    文章

    767

    浏览量

    35024
  • 成像系统
    +关注

    关注

    2

    文章

    191

    浏览量

    13897

原文标题:南京大学开发出基于超透镜阵列的光谱光场成像系统

文章出处:【微信号:MEMSensor,微信公众号:MEMS】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    透镜的设计与分析

    :探测透镜(柱结构分析)  传播到焦点  探测 在不同物理值的探测建模方面具有完全的灵活性,包括: •辐射度测量,例如
    发表于 08-06 13:48

    使用800nm OCT光谱仪实现深OCT成像

    使用800nmOCT光谱仪实现深OCT成像传统上,OCT成像需要使用更长的波长来探测单次扫描中超过几毫米的深度,但波长超过1100nm之后,就需要使用InGaAs探测
    的头像 发表于 07-18 08:16 241次阅读
    使用800nm OCT<b class='flag-5'>光谱</b>仪实现<b class='flag-5'>超</b>深OCT<b class='flag-5'>成像</b>

    什么是透镜透镜的制造及其应用

      1.什么是透镜? 透镜利用介电表面上的亚波长“原子”图案来控制入射
    的头像 发表于 07-16 06:26 353次阅读

    研究人员利用人工智能提升透镜相机的图像质量

    研究人员利用深度学习技术提高了直接集成在 CMOS 成像芯片上的透镜相机(左)的图像质量。透镜
    的头像 发表于 06-11 06:34 309次阅读
    研究人员<b class='flag-5'>利用</b>人工智能提升<b class='flag-5'>超</b><b class='flag-5'>透镜</b>相机的图像质量

    基于色散透镜的定量相位成像技术

    针对这类样本的成像技术中,无标记显微成像技术能够将透明样本与周边环境的折射率对比度转换为成像图案的强度对比度,很好地弥补了荧光或染色技术需要外源性标记物或样本标记流程繁琐的缺陷。
    发表于 04-18 10:30 383次阅读
    基于<b class='flag-5'>色散</b><b class='flag-5'>超</b>构<b class='flag-5'>透镜</b>的定量相位<b class='flag-5'>成像</b>技术

    平面光学元件在宽带热成像中的应用

    长波红外(LWIR)成像在许多应用中具有重要意义,从消费电子产品到特殊行业。它应用于夜视、遥感和远程成像。然而,这些成像系统中使用的传统折射透镜
    的头像 发表于 03-28 06:30 258次阅读

    光谱成像技术原理及其优势

    可调谐滤波分光、棱镜分光、芯片镀膜等。目前,高光谱成像技术被广泛应用于医学诊断、遥感检测、食品质量与安全等方面。 高光谱数据主要由遥感传感器捕获,而遥感传感器可分为:摄影类型的
    的头像 发表于 03-27 06:34 747次阅读
    高<b class='flag-5'>光谱成像</b>技术原理及其优势

    紧凑型矢量生成系统

    紧凑型矢量生成系统 1,概述矢量可广泛应用于光学捕获和操纵、表面等离子体、光学加工、焦
    发表于 02-28 13:20

    光谱成像仪原理 多光谱成像仪能测什么

    仪的原理及其可以测量的内容。 多光谱成像仪的原理: 多光谱成像仪的原理基于不同物体对不同波长的吸收和反射特性不同。它通过多个波长的传感器(或滤光片)同时感测目标物体的
    的头像 发表于 02-20 11:27 1815次阅读

    光谱成像仪能测什么

    。本文将详细介绍多光谱成像仪的原理、应用和未来发展方向。 一、多光谱成像仪的工作原理 多光谱成像仪主要由光学系统光谱选择
    的头像 发表于 02-14 15:47 1034次阅读

    摄像头凸透镜成像原理 摄像的原理是小孔成像

    摄像头是一种利用透镜和图像传感器的设备,能够将光学图像转化为电子信号,并将其传输到电脑或其他设备上进行记录和处理。摄像头的工作原理主要涉及透镜成像
    的头像 发表于 02-01 15:01 1532次阅读

    基于光电计算融合的透镜消色差成像方案

    近期,国防科技大学理学院杨俊波教授团队和计算机学院王耀华教授团队、西南大学吴加贵教授团队提出基于光电计算融合的透镜消色差成像方案。
    的头像 发表于 01-16 10:10 600次阅读
    基于光电计算融合的<b class='flag-5'>超</b>构<b class='flag-5'>透镜</b>消色差<b class='flag-5'>成像</b>方案

    新型微透镜:具有高聚焦效率的混合消色差透镜

    高性能混合微光学器件实现了高聚焦效率,同时最大限度地减少了体积和厚度。此外,这些微透镜可以构建阵列,形成更大面积的图像,用于消色差
    的头像 发表于 12-29 06:30 456次阅读
    新型微<b class='flag-5'>透镜</b>:具有高聚焦效率的混合消色差<b class='flag-5'>透镜</b>

    快照高光谱成像构光学+小数据凸优化/深度学习理论

    该研究不使用滤波构建彩色物体多光谱图像的主要思想,是利用多共振构原子作为构表面
    的头像 发表于 11-29 16:55 647次阅读
    快照高<b class='flag-5'>光谱成像</b>:<b class='flag-5'>超</b>构光学+小数据凸优化/深度学习理论

    如何利用电可调的双模透镜实现明成像和边缘增强成像

    )的合作科研小组成功设计了一种电可调的双模透镜(metalens)——可以利用单个透镜实现不同
    的头像 发表于 11-09 10:44 738次阅读
    如何<b class='flag-5'>利用</b>电可调的双模<b class='flag-5'>超</b>构<b class='flag-5'>透镜</b>实现明<b class='flag-5'>场</b><b class='flag-5'>成像</b>和边缘增强<b class='flag-5'>成像</b>