0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

新晋图像生成王者扩散模型

OpenCV学堂 来源:StyleGAN 作者:StyleGAN 2022-06-06 10:54 次阅读

新晋图像生成王者扩散模型,刚刚诞生没多久。

有关它的理论和实践都还在“野蛮生长”。

来自英伟达StyleGAN的原班作者们站了出来,尝试给出了一些设计扩散模型的窍门和准则,结果模型的质量和效率都有所改进,比如将现有ImageNet-64模型的FID分数从2.07提高到接近SOTA的1.55分。

c89fd514-e4df-11ec-ba43-dac502259ad0.png

他们这一工作成果迅速得到了业界大佬的认同。

DeepMind研究员就称赞道:这篇论文简直就是训练扩散模型的人必看,妥妥的一座金矿。

c8eb9008-e4df-11ec-ba43-dac502259ad0.png

三大贡献显著提高模型质量和效率

我们从以下几个方面来看StyleGAN作者们对扩散模型所做的三大贡献:

用通用框架表示扩散模型

在这部分,作者的贡献主要为从实践的角度观察模型背后的理论,重点关注出现在训练和采样阶段的“有形”对象和算法,更好地了解了组件是如何连接在一起的,以及它们在整个系统的设计中可以使用的自由度(degrees of freedom)。

精华就是下面这张表:

c9384056-e4df-11ec-ba43-dac502259ad0.png

该表给出了在他们的框架中复现三种模型的确定变体的公式。

(这三种方法(VP、VE、iDDPM+ DDIM)不仅被广泛使用且实现了SOTA性能,还来自不同的理论基础。)

这些公式让组件之间原则上没有隐含的依赖关系,在合理范围内选择任意单个公示都可以得出一个功能模型。

随机采样和确定性采样的改进

作者的第二组贡献涉及扩散模型合成图像的采样过程。

他们确定了最佳的时间离散化(time discretization),对采样过程应用了更高阶的Runge–Kutta方法,并在三个预训练模型上评估不同的方法,分析了随机性在采样过程中的有用性。

结果在合成过程中所需的采样步骤数量显着减少,改进的采样器可以用作几个广泛使用的扩散模型的直接替代品。

先看确定性采样。用到的三个测试模型还是上面的那三个,来自不同的理论框架和模型族。

作者首先使用原始的采样器(sampler)实现测量这些模型的基线结果,然后使用表1中的公式将这些采样方法引入他们的统一框架,再进行改进。

接着根据在50000张生成图像和所有可用真实图像之间计算的FID分数来评估质量。

c9765d6e-e4df-11ec-ba43-dac502259ad0.png

可以看到,原始的的确定性采样器以蓝色显示,在他们的统一框架(橙色)中重新实现这些方法会产生类似或更好的结果。

作者解释,这些差异是由于原始实现中的某些疏忽,加上作者对离散噪声级的处理更仔细造成的。

确定性采样好处虽然多,但与每一步都向图像中注入新噪声的随机采样相比,它输出的图像质量确实更差。

不过作者很好奇,假设ODE(常微分方程)和SDE(随机微分方程)在理论上恢复相同的分布,随机性的作用到底是什么?

在此他们提出了一种新的随机采样器,它将现有的高阶ODE积分器与添加和去除噪声的显式“Langevin-like ‘churn’”相结合。

最终模型性能提升显著,而且仅通过对采样器的改进,就能够让ImageNet-64模型原来的FID分数从2.07提高到1.55,接近SOTA水平。

c9a2bbd4-e4df-11ec-ba43-dac502259ad0.png

预处理和训练

作者的第三组贡献主要为分数建模(score-modeling)神经网络的训练。

这部分继续依赖常用的网络体系结构(DDPM、NCSN),作者通过对扩散模型设置中网络的输入、输出和损失函数的预处理进行了原则性分析,得出了改进训练动态的最佳实践。

比如使用依赖于σ(noise level)的跳跃连接对神经网络进行预处理,使其能够估计y(signal)或n(noise),或介于两者之间的东西。

下表具体展示了模型彩英不同训练配置得到的FID分数。

c9fe22bc-e4df-11ec-ba43-dac502259ad0.png

作者从基线训练配置开始,使用确定性采样器(称为配置A),重新调整了基本超参数(配置B),并通过移除最低分辨率层,并将最高分辨率层的容量加倍来提高模型的表达能力(配置C)。

然后用预处理(配置D)替换原来的{cin,cout,cnoise,cskip}选项。这使结果基本保持不变,但VE在64×64分辨率下有很大改善。该预处理方法的主要好处不是改善FID本身,而是使训练更加稳健,从而将重点转向重新设计损失函数又不会产生不利影响。

VP和VE只在Fθ的架构上有所不同(配置E和F)。

除此之外,作者还建议改进训练期间的噪声级分布,并发现通常与GANs一起使用的无泄漏风险增强(non-leaking augmentation)操作也有利于扩散模型。

比如从上表中,我们可以看到:有条件和无条件CIFAR-10的最新FID分别达到了1.79和1.97,打破了之前的记录(1.85和2.1046)。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 算法
    +关注

    关注

    23

    文章

    4615

    浏览量

    92972
  • 模型
    +关注

    关注

    1

    文章

    3254

    浏览量

    48874

原文标题:DeepMind谷歌研究员力荐:扩散模型效率&生成质量提升窍门,来自StyleGAN原作者

文章出处:【微信号:CVSCHOOL,微信公众号:OpenCV学堂】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    基于移动自回归的时序扩散预测模型

    回归取得了比传统基于噪声的扩散模型更好的生成效果,并且获得了人工智能顶级会议 NeurIPS 2024 的 best paper。 然而在时间序列预测领域,当前主流的扩散方法还是传统的
    的头像 发表于 01-03 14:05 22次阅读
    基于移动自回归的时序<b class='flag-5'>扩散</b>预测<b class='flag-5'>模型</b>

    借助谷歌Gemini和Imagen模型生成高质量图像

    在快速发展的生成式 AI 领域,结合不同模型的优势可以带来显著的成果。通过利用谷歌的 Gemini 模型来制作详细且富有创意的提示,然后使用 Imagen 3 模型根据这些提示
    的头像 发表于 01-03 10:38 100次阅读
    借助谷歌Gemini和Imagen<b class='flag-5'>模型</b><b class='flag-5'>生成</b>高质量<b class='flag-5'>图像</b>

    浙大、微信提出精确反演采样器新范式,彻底解决扩散模型反演问题

    随着扩散生成模型的发展,人工智能步入了属于 AIGC 的新纪元。扩散生成模型可以对初始高斯噪声进
    的头像 发表于 11-27 09:21 193次阅读
    浙大、微信提出精确反演采样器新范式,彻底解决<b class='flag-5'>扩散</b><b class='flag-5'>模型</b>反演问题

    扩散模型的理论基础

    扩散模型的迅速崛起是过去几年机器学习领域最大的发展之一。在这本简单易懂的指南中,学习你需要知道的关于扩散模型的一切。
    的头像 发表于 10-28 09:30 448次阅读
    <b class='flag-5'>扩散</b><b class='flag-5'>模型</b>的理论基础

    Meta发布Imagine Yourself AI模型,重塑个性化图像生成未来

    Meta公司近日在人工智能领域迈出了重要一步,隆重推出了其创新之作——“Imagine Yourself”AI模型,这一突破性技术为个性化图像生成领域带来了前所未有的变革。在社交媒体与虚拟现实技术
    的头像 发表于 08-26 10:59 522次阅读

    Runway发布Gen-3 Alpha视频生成模型

    专为电影和图像内容创作者提供生成式AI工具的Runway公司近日宣布,其最新的Gen-3 Alpha视频生成模型已经正式问世。这款模型在多方
    的头像 发表于 06-19 09:25 584次阅读

    南开大学和字节跳动联合开发一款StoryDiffusion模型

    近日,南开大学和字节跳动联合开发的 StoryDiffusion 模型解决了扩散模型生成连贯图像与视频的难题。
    的头像 发表于 05-07 14:46 1286次阅读

    KOALA人工智能图像生成模型问世

    近日,韩国科学团队宣布研发出名为 KOALA 的新型人工智能图像生成模型,该模型在速度和质量上均实现了显著突破。KOALA 能够在短短 2 秒内生成
    的头像 发表于 03-05 10:46 794次阅读

    韩国科研团队发布新型AI图像生成模型KOALA,大幅优化硬件需求

    由此模型的核心在于其运用了“知识蒸馏”(knowledge distillation)技术,这使得开源图像生成工具Stable Diffusion XL可大幅缩小其规模。原Stable Diffusion XL拥有25.6亿个参
    的头像 发表于 03-01 14:10 641次阅读

    谷歌Gemini AI模型因人物图像生成问题暂停运行

    据报道,部分用户发现Gemini生成的图片存在明显错误,如特斯拉创始人和其他名人变成了黑人模样。谷歌已决定暂停该模型的人物图像生成功能以待改善。
    的头像 发表于 02-25 09:59 595次阅读

    Stability AI试图通过新的图像生成人工智能模型保持领先地位

    Stability AI的最新图像生成模型Stable Cascade承诺比其业界领先的前身Stable Diffusion更快、更强大,而Stable Diffusion是许多其他文本到图像
    的头像 发表于 02-19 16:03 951次阅读
    Stability AI试图通过新的<b class='flag-5'>图像</b><b class='flag-5'>生成</b>人工智能<b class='flag-5'>模型</b>保持领先地位

    谷歌推出AI扩散模型Lumiere

    近日,谷歌研究院重磅推出全新AI扩散模型Lumiere,这款模型基于谷歌自主研发的“Space-Time U-Net”基础架构,旨在实现视频生成的一次性完成,同时保证视频的真实性和动作
    的头像 发表于 02-04 13:49 1044次阅读

    Adobe提出DMV3D:3D生成只需30秒!让文本、图像都动起来的新方法!

    因此,本文研究者的目标是实现快速、逼真和通用的 3D 生成。为此,他们提出了 DMV3D。DMV3D 是一种全新的单阶段的全类别扩散模型,能直接根据模型文字或单张图片的输入,
    的头像 发表于 01-30 16:20 872次阅读
    Adobe提出DMV3D:3D<b class='flag-5'>生成</b>只需30秒!让文本、<b class='flag-5'>图像</b>都动起来的新方法!

    谷歌推出能一次生成完整视频的扩散模型

    该公司指出,当前众多文生视频模型普遍存在无法生成长时、高品质及动作连贯的问题。这些模型往往采用“分段生成视频”策略,即先生成少量关键帧,再借
    的头像 发表于 01-29 11:14 545次阅读

    基于DiAD扩散模型的多类异常检测工作

    现有的基于计算机视觉的工业异常检测技术包括基于特征的、基于重构的和基于合成的技术。最近,扩散模型因其强大的生成能力而闻名,因此本文作者希望通过扩散
    的头像 发表于 01-08 14:55 1412次阅读
    基于DiAD<b class='flag-5'>扩散</b><b class='flag-5'>模型</b>的多类异常检测工作